Moving Object Grouping Rule Mining Based on Accumulated Spatio-temporal Data

被引:0
|
作者
Yang, Guodong [1 ]
Wang, Xiang [1 ]
Huang, Zhitao [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha, Hunan, Peoples R China
来源
2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA) | 2017年
关键词
trajectory; clustering; association rule mining; traveling companion; DATABASES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advance of mobile electronic devices and the development of positioning technology, a large volume of spatio-temopral data are collected in the form of desultorily data streams, which contain a lot of potential information. In this study, we focus on discovering the composition relationships between observation moving objects in a long period. Such research can be widely used in military and civilian areas, including recommendation systems, wildlife research, military monitoring and battlefield situation awareness. The composition relationships of moving objects can be called as moving object grouping rule. In this paper, we proposed an improved traveling companion discovery method based on Nearest neighbor of time to obtained the object transactions in short time and used the incremental association rule mining (ARM) method to discovering the grouping rules of moving objects in long-term.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [21] A new approach for spatio-temporal data mining
    Cassat, Sabine
    Irani, Pourang
    Serrano, Marcos
    Dubois, Emmanuel
    ACTES DE LA 30 CONFERENCE FRANCOPHONE SUR L'INTERACTION HOMME-MACHINE - (IHM 2018), 2018, : 163 - 169
  • [22] A visual approach for spatio-temporal data mining
    Kechadi, M-Tahar
    Bertolotto, Michela
    IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 504 - +
  • [23] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [24] Unpredictable Data and Moving Object Handling Prototype Architecture Using Spatio-Temporal DBMS
    Hafidhoh, Nisa'ul
    Yusuf, Atika
    Laksmiwati, Hira
    Widyani, Yani
    2014 International Conference on Data and Software Engineering (ICODSE), 2014,
  • [25] Enhancing Moving Object Segmentation with Spatio-Temporal Information Fusion
    Chen, Siyu
    Huang, Yilei
    Li, Qilin
    Wang, Ruosong
    Zhang, Zhenhai
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1783 - 1788
  • [26] A Spatio-Temporal Framework for Moving Object Detection in Outdoor Scene
    Rout, Deepak Kumar
    Puhan, Sharmistha
    GLOBAL TRENDS IN INFORMATION SYSTEMS AND SOFTWARE APPLICATIONS, PT 2, 2012, 270 : 494 - +
  • [28] Spatio-temporal grouping in perceptual rivalry
    Conrad, V.
    Vuong, Q. C.
    Ernst, M. O.
    PERCEPTION, 2007, 36 : 87 - 87
  • [29] Attention modulates spatio-temporal grouping
    Aydin, Murat
    Herzog, Michael H.
    Oegmen, Haluk
    VISION RESEARCH, 2011, 51 (04) : 435 - 446
  • [30] Object-oriented spatio-temporal data model
    Shu, Hong
    Chen, Jun
    Du, Daosheng
    Zhou, Yongqian
    Wuhan Cehui Keji Daxue Xuebao/Journal of Wuhan Technical University of Surveying and Mapping, 1997, 22 (03): : 229 - 233