Deep Learning Approaches in Histopathology

被引:31
作者
Ahmed, Alhassan Ali [1 ,2 ]
Abouzid, Mohamed [2 ,3 ]
Kaczmarek, Elzbieta [1 ]
机构
[1] Poznan Univ Med Sci, Dept Bioinformat & Computat Biol, PL-60812 Poznan, Poland
[2] Poznan Univ Med Sci, Doctoral Sch, PL-60812 Poznan, Poland
[3] Poznan Univ Med Sci, Fac Pharm, Dept Phys Pharm & Pharmacokinet, Rokietnicka 3 St, PL-60806 Poznan, Poland
关键词
artificial intelligence; image analysis; deep learning; machine learning; pathology; tumor morphology; WHOLE SLIDE IMAGES; CONVOLUTIONAL NEURAL-NETWORK; CIRCULATING TUMOR-CELLS; ARTIFICIAL-INTELLIGENCE; PROSTATE-CANCER; BREAST-CANCER; CLASSIFICATION; DIAGNOSIS; SURVIVAL; BIOPSIES;
D O I
10.3390/cancers14215264
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Artificial intelligence techniques have changed the traditional way of diagnosis. The physicians' consultation decisions can now be supported with a particular algorithm that is beneficial for the patient in terms of accuracy and time saved. Many deep learning and machine learning algorithms are being validated and tested regularly; still, only a few can be implemented clinically. This review aims to shed light on the current and potential applications of deep learning and machine learning in tumor pathology. The revolution of artificial intelligence and its impacts on our daily life has led to tremendous interest in the field and its related subtypes: machine learning and deep learning. Scientists and developers have designed machine learning- and deep learning-based algorithms to perform various tasks related to tumor pathologies, such as tumor detection, classification, grading with variant stages, diagnostic forecasting, recognition of pathological attributes, pathogenesis, and genomic mutations. Pathologists are interested in artificial intelligence to improve the diagnosis precision impartiality and to minimize the workload combined with the time consumed, which affects the accuracy of the decision taken. Regrettably, there are already certain obstacles to overcome connected to artificial intelligence deployments, such as the applicability and validation of algorithms and computational technologies, in addition to the ability to train pathologists and doctors to use these machines and their willingness to accept the results. This review paper provides a survey of how machine learning and deep learning methods could be implemented into health care providers' routine tasks and the obstacles and opportunities for artificial intelligence application in tumor morphology.
引用
收藏
页数:19
相关论文
共 102 条
[11]   Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images [J].
Bejnordi B.E. ;
Zuidhof G. ;
Balkenhol M. ;
Hermsen M. ;
Bult P. ;
Van Ginneken B. ;
Karssemeijer N. ;
Litjens G. ;
Van Der Laak J. .
Journal of Medical Imaging, 2017, 4 (04)
[12]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[13]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[14]   A Perspective on Cancer Cell Metastasis [J].
Chaffer, Christine L. ;
Weinberg, Robert A. .
SCIENCE, 2011, 331 (6024) :1559-1564
[15]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[16]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[17]   Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype [J].
Couture, Heather D. ;
Williams, Lindsay A. ;
Geradts, Joseph ;
Nyante, Sarah J. ;
Butler, Ebonee N. ;
Marron, J. S. ;
Perou, Charles M. ;
Troester, Melissa A. ;
Niethammer, Marc .
NPJ BREAST CANCER, 2018, 4
[18]   Circulating tumor cells, disease progression, and survival in metastatic breast cancer [J].
Cristofanilli, Massimo .
SEMINARS IN ONCOLOGY, 2006, 33 (03) :S9-S14
[19]   Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie N. C. ;
Tomaszewski, John ;
Gonzalez, Fabio A. ;
Madabhushi, Anant .
SCIENTIFIC REPORTS, 2017, 7
[20]   High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie ;
Tomaszewski, John ;
Madabhushi, Anant ;
Gonzalez, Fabio .
PLOS ONE, 2018, 13 (05)