Deep Learning Approaches in Histopathology

被引:30
作者
Ahmed, Alhassan Ali [1 ,2 ]
Abouzid, Mohamed [2 ,3 ]
Kaczmarek, Elzbieta [1 ]
机构
[1] Poznan Univ Med Sci, Dept Bioinformat & Computat Biol, PL-60812 Poznan, Poland
[2] Poznan Univ Med Sci, Doctoral Sch, PL-60812 Poznan, Poland
[3] Poznan Univ Med Sci, Fac Pharm, Dept Phys Pharm & Pharmacokinet, Rokietnicka 3 St, PL-60806 Poznan, Poland
关键词
artificial intelligence; image analysis; deep learning; machine learning; pathology; tumor morphology; WHOLE SLIDE IMAGES; CONVOLUTIONAL NEURAL-NETWORK; CIRCULATING TUMOR-CELLS; ARTIFICIAL-INTELLIGENCE; PROSTATE-CANCER; BREAST-CANCER; CLASSIFICATION; DIAGNOSIS; SURVIVAL; BIOPSIES;
D O I
10.3390/cancers14215264
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Artificial intelligence techniques have changed the traditional way of diagnosis. The physicians' consultation decisions can now be supported with a particular algorithm that is beneficial for the patient in terms of accuracy and time saved. Many deep learning and machine learning algorithms are being validated and tested regularly; still, only a few can be implemented clinically. This review aims to shed light on the current and potential applications of deep learning and machine learning in tumor pathology. The revolution of artificial intelligence and its impacts on our daily life has led to tremendous interest in the field and its related subtypes: machine learning and deep learning. Scientists and developers have designed machine learning- and deep learning-based algorithms to perform various tasks related to tumor pathologies, such as tumor detection, classification, grading with variant stages, diagnostic forecasting, recognition of pathological attributes, pathogenesis, and genomic mutations. Pathologists are interested in artificial intelligence to improve the diagnosis precision impartiality and to minimize the workload combined with the time consumed, which affects the accuracy of the decision taken. Regrettably, there are already certain obstacles to overcome connected to artificial intelligence deployments, such as the applicability and validation of algorithms and computational technologies, in addition to the ability to train pathologists and doctors to use these machines and their willingness to accept the results. This review paper provides a survey of how machine learning and deep learning methods could be implemented into health care providers' routine tasks and the obstacles and opportunities for artificial intelligence application in tumor morphology.
引用
收藏
页数:19
相关论文
共 102 条
[1]  
Andrews S, 2002, NEURIPS, P561
[2]   Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks [J].
Aprupe, Lilija ;
Litjens, Geert ;
Brinker, Titus J. ;
van der Laak, Jeroen ;
Grabe, Niels .
PEERJ, 2019, 7
[3]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[4]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[5]   Glandular Morphometrics for Objective Grading of Colorectal Adenocarcinoma Histology Images [J].
Awan, Ruqayya ;
Sirinukunwattana, Korsuk ;
Epstein, David ;
Jefferyes, Samuel ;
Qidwai, Uvais ;
Aftab, Zia ;
Mujeeb, Imaad ;
Snead, David ;
Rajpoot, Nasir .
SCIENTIFIC REPORTS, 2017, 7 :2220-2243
[6]  
Barbieri Andrea Lynne, 2018, J Pathol Inform, V9, P8, DOI 10.4103/jpi.jpi_70_17
[7]   Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer [J].
Barbieri, Christopher E. ;
Baca, Sylvan C. ;
Lawrence, Michael S. ;
Demichelis, Francesca ;
Blattner, Mirjam ;
Theurillat, Jean-Philippe ;
White, Thomas A. ;
Stojanov, Petar ;
Van Allen, Eliezer ;
Stransky, Nicolas ;
Nickerson, Elizabeth ;
Chae, Sung-Suk ;
Boysen, Gunther ;
Auclair, Daniel ;
Onofrio, Robert C. ;
Park, Kyung ;
Kitabayashi, Naoki ;
MacDonald, Theresa Y. ;
Sheikh, Karen ;
Vuong, Terry ;
Guiducci, Candace ;
Cibulskis, Kristian ;
Sivachenko, Andrey ;
Carter, Scott L. ;
Saksena, Gordon ;
Voet, Douglas ;
Hussain, Wasay M. ;
Ramos, Alex H. ;
Winckler, Wendy ;
Redman, Michelle C. ;
Ardlie, Kristin ;
Tewari, Ashutosh K. ;
Mosquera, Juan Miguel ;
Rupp, Niels ;
Wild, Peter J. ;
Moch, Holger ;
Morrissey, Colm ;
Nelson, Peter S. ;
Kantoff, Philip W. ;
Gabriel, Stacey B. ;
Golub, Todd R. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Getz, Gad ;
Rubin, Mark A. ;
Garraway, Levi A. .
NATURE GENETICS, 2012, 44 (06) :685-U107
[8]   Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks [J].
Bardou, Dalal ;
Zhang, Kun ;
Ahmad, Sayed Mohammad .
IEEE ACCESS, 2018, 6 :24680-24693
[9]   AI for prostate cancer diagnosis - hype or today's reality? [J].
Bashashati, Ali ;
Goldenberg, S. Larry .
NATURE REVIEWS UROLOGY, 2022, 19 (05) :261-262
[10]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512