Layered Molybdenum (Oxy) Pyrophosphate (MoO2)2P2O7 as a Cathode Material for Sodium-Ion Batteries

被引:17
|
作者
Deng, Wenwen [1 ]
Feng, Xuyong [2 ]
Xiao, Yao [1 ]
Li, Changming [1 ,3 ]
机构
[1] Suzhou Univ Sci & TechnoL, Mat Sci & Devices Inst, 1 Kerui Rd, Suzhou 215009, Jiangsu, Peoples R China
[2] Hefei Univ Technol, Sch Mat Sci & Engn, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China
[3] Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, 2 Tiansheng Rd, Chongqing 400715, Peoples R China
来源
CHEMELECTROCHEM | 2018年 / 5卷 / 07期
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
sodium-ion battery; molybdenum phosphate; zero strain; cycling stability; LITHIUM; ENERGY; PHOSPHATES; P2-TYPE;
D O I
10.1002/celc.201800005
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Layer-structured (MoO2)(2)P2O7 was prepared through the decomposition of MoO2HPO4 and further used as a cathode material for sodium-ion batteries. Results reveal that the capacity and cycling stability of the (MoO2)(2)P2O7/Na battery largely depends on the lower cutoff voltage. When cycling between 4.0 -1.5V, (MoO2)(2)P2O7 delivers a capacity of 180mAhg(-1) in the first cycle, but it drops very fast owing to a phase decomposition of the crystal structure to an amorphous one. The cycling stability is still not good when cycling between 4.0 -1.7V. However, when cycling between 4.0 - 2.0V, the performance can be significantly improved, which delivers 93mAhg(-1) in the first cycle and, after 50 cycles, the capacity can maintain 55mAhg(-1). This is mainly attributed to the stable crystal structure of the Na-intercalated (MoO2)(2)P2O7 electrode. Ex situ X-ray diffraction examination demonstrates that the volume change of the (MoO2)(2)P2O7 electrode during the first charging process is only 1%.
引用
收藏
页码:1032 / 1036
页数:5
相关论文
共 50 条
  • [21] Anionic Redox and Electrochemical Kinetics of the Na2Mn3O7 Cathode Material for Sodium-Ion Batteries
    Hakim, Charifa
    Ma, Le Anh
    Duda, Laurent C.
    Younesi, Reza
    Brandell, Daniel
    Edstrom, Kristina
    Saadoune, Ismael
    ENERGY & FUELS, 2022, 36 (07) : 4015 - 4025
  • [22] Sm-doped P2-type layered oxide with spherical secondary hierarchy as cathode material for sodium-ion batteries
    Shi, Shaojun
    Jin, Panye
    Huang, Zhixiong
    Kou, Jialei
    Ji, Hongmei
    Yin, Wenyu
    Tang, Xiaoyan
    Mao, Han
    VACUUM, 2025, 237
  • [23] P2-type layered oxide cathode with honeycomb-ordered superstructure for sodium-ion batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    ENERGY STORAGE MATERIALS, 2024, 69
  • [24] Effect of sodium content on the electrochemical performance of P2-Na2Ni2TeO6 layered oxide cathode for sodium-ion batteries
    Moeez, Iqra
    Bhatti, Ali Hussain Umar
    Cho, Min-Kyung
    Susanto, Dieky
    Akbar, Muhammad
    Ali, Ghulam
    Chung, Kyung Yoon
    CARBON ENERGY, 2025, 7 (02)
  • [25] Enhanced NaFe0.5Mn0.5O2/C Nanocomposite as a Cathode for Sodium-Ion Batteries
    Nanthagopal, Murugan
    Ho, Chang Won
    Shaji, Nitheesha
    Sim, Gyu Sang
    Karthik, Murugesan Varun
    Kim, Hong Ki
    Lee, Chang Woo
    NANOMATERIALS, 2022, 12 (06)
  • [26] P2/O3 Biphasic Layered Oxide Heterojunction: A Cathode for High-Capacity Sodium-Ion Batteries
    Li, Lun
    Wu, Qibai
    Zhang, Shangshang
    Li, Shengkai
    Cao, Yuliang
    Zhang, Haiyan
    Li, Zhenghui
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9347 - 9355
  • [27] Synthesis and characterization of a crystalline Na4Fe3(PO4)2(P2O7) cathode material for sodium-ion batteries
    Subasi, Yaprak
    Altenschmidt, Laura
    Lindgren, Fredrik
    Ericsson, Tore
    Haggstrom, Lennart
    Tai, Cheuk-Wai
    Liu, Haidong
    Younesi, Reza
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23506 - 23517
  • [28] High-entropy Na4Fe2.65(NiCrMgCoMn)0.027(PO4)2P2O7 cathode for high-rate sodium-ion batteries
    Qiu, Yi
    Shi, Qinhao
    Yu, Xuan
    Liu, Yiming
    Liu, Yang
    Feng, Wuliang
    Wang, Jing
    Zhao, Yufeng
    CHEMICAL ENGINEERING SCIENCE, 2024, 300
  • [29] An orbital principle to design P2-NaxMO2 cathode materials for sodium-ion batteries
    Tong, Lu
    Ma, Pengju
    Shu, Jiaohong
    Wang, Lili
    Chen, Guanglong
    Wu, Jianbao
    Mi, Yiming
    Zhao, Xinxin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (21) : 13201 - 13209
  • [30] Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries
    Manikandan, Palanisamy
    Heo, Seongwoo
    Kim, Hyun Woo
    Jeong, Hu Young
    Lee, Eungje
    Kim, Youngsik
    JOURNAL OF POWER SOURCES, 2017, 363 : 442 - 449