Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions

被引:12
作者
Allen, Edward E. [1 ]
Hallam, Joshua [1 ]
Mason, Sarah K. [1 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
关键词
Quasisymmetric functions; Dual immaculate functions; Schensted insertion; Schur functions; Tableaux; MACDONALD POLYNOMIALS; HECKE ALGEBRAS; HOPF-ALGEBRAS; RULE;
D O I
10.1016/j.jcta.2018.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncomxnutative Schur functions into the immaculate functions. Finally, we provide a Remmel Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 108
页数:39
相关论文
共 41 条
[21]   Eulerian quasisymmetric functions and cyclic sieving [J].
Sagan, Bruce ;
Shareshian, John ;
Wachs, Michelle L. .
ADVANCES IN APPLIED MATHEMATICS, 2011, 46 (1-4) :536-562
[22]   Hopf algebra structure of symmetric and quasisymmetric functions in superspace [J].
Fishel, Susanna ;
Lapointe, Luc ;
Elena Pinto, Maria .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 :144-170
[23]   CHROMATIC QUASISYMMETRIC FUNCTIONS AND NONCOMMUTATIVE P-SYMMETRIC FUNCTIONS [J].
Hwang, Byung-Hak .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) :2855-2896
[24]   GENERALIZED HARMONIC NUMBER SUMS AND QUASISYMMETRIC FUNCTIONS [J].
Chen, Kwang-Wu .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) :1253-1275
[25]   Quasisymmetric functions and the Chow ring of the stack of expanded pairs [J].
Jakob Oesinghaus .
Research in the Mathematical Sciences, 2019, 6
[26]   Quasisymmetric functions and the Chow ring of the stack of expanded pairs [J].
Oesinghaus, Jakob .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
[28]   The enriched q-monomial basis of the quasisymmetric functions [J].
Grinberg, Darij ;
Vassilieva, Ekaterina A. .
ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04)
[29]   DECOMPOSITIONS OF PACKED WORDS AND SELF DUALITY OF WORD QUASISYMMETRIC FUNCTIONS [J].
Mlodecki, Hugo .
COMBINATORIAL THEORY, 2024, 4 (01)
[30]   P-PARTITIONS WITH FLAGS AND BACK STABLE QUASISYMMETRIC FUNCTIONS [J].
Nadeau, Philippe ;
Tewari, Vasu .
COMBINATORIAL THEORY, 2024, 4 (02)