Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions

被引:10
|
作者
Allen, Edward E. [1 ]
Hallam, Joshua [1 ]
Mason, Sarah K. [1 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
关键词
Quasisymmetric functions; Dual immaculate functions; Schensted insertion; Schur functions; Tableaux; MACDONALD POLYNOMIALS; HECKE ALGEBRAS; HOPF-ALGEBRAS; RULE;
D O I
10.1016/j.jcta.2018.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncomxnutative Schur functions into the immaculate functions. Finally, we provide a Remmel Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 108
页数:39
相关论文
共 38 条
  • [1] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [2] Skew quasisymmetric Schur functions and noncommutative Schur functions
    Bessenrodt, C.
    Luoto, K.
    van Willigenburg, S.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4492 - 4532
  • [3] Positive expansions of extended Schur functions in the Young quasisymmetric Schur basis
    Marcum, Chloe'
    Niese, Elizabeth
    INVOLVE, A JOURNAL OF MATHEMATICS, 2024, 17 (02): : 217 - 232
  • [4] Quasisymmetric (k, l)-Hook Schur Functions
    Sarah K. Mason
    Elizabeth Niese
    Annals of Combinatorics, 2018, 22 : 167 - 199
  • [5] Quasisymmetric (k, l)-Hook Schur Functions
    Mason, Sarah K.
    Niese, Elizabeth
    ANNALS OF COMBINATORICS, 2018, 22 (01) : 167 - 199
  • [6] Row-Strict Quasisymmetric Schur Functions
    Mason, Sarah
    Remmel, Jeffrey
    ANNALS OF COMBINATORICS, 2014, 18 (01) : 127 - 148
  • [7] Row-Strict Quasisymmetric Schur Functions
    Sarah Mason
    Jeffrey Remmel
    Annals of Combinatorics, 2014, 18 : 127 - 148
  • [8] Skew row-strict quasisymmetric Schur functions
    Mason, Sarah K.
    Niese, Elizabeth
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 763 - 791
  • [9] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    Bessenrodt, C.
    van Willigenburg, S.
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 275 - 294
  • [10] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    C. Bessenrodt
    S. van Willigenburg
    Annals of Combinatorics, 2013, 17 : 275 - 294