Rapid Prototyping Platform for Saccharomyces cerevisiae Using Computer-Aided Genetic Design Enabled by Parallel Software and Workcell Platform Development

被引:12
|
作者
Rajakumar, P. D. [1 ]
Gowers, G-O F. [2 ]
Suckling, L. [1 ]
Foster, A. [1 ]
Ellis, T. [2 ,3 ]
Kitney, R., I [1 ,3 ]
McClymont, D. W. [1 ]
Freemont, P. S. [1 ,4 ]
机构
[1] Imperial Coll London, London DNA Foundry, London SW7 2AZ, England
[2] Imperial Coll London, Imperial Coll, Ctr Synthet Biol, London, England
[3] Imperial Coll London, Dept Bioengn, London, England
[4] Imperial Coll London, Dept Med, Sect Struct Biol, London, England
来源
SLAS TECHNOLOGY | 2019年 / 24卷 / 03期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
high-throughput yeast transformation; design of eperiment (DOE); yeast toolkit (YTK)-Golden Gate; acoustic liquid handling workcell; synthetic biology; BIOLOGY; YEAST;
D O I
10.1177/2472630318798304
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biofoundries have enabled the ability to automate the construction of genetic constructs using computer-aided design. In this study, we have developed the methodology required to abstract and automate the construction of yeast-compatible designs. We demonstrate the use of our in-house software tool, AMOS, to coordinate with design software, JMP, and robotic liquid handling platforms to successfully manage the construction of a library of 88 yeast expression plasmids. In this proof-of-principle study, we used three fluorescent genes as proxy for three enzyme coding sequences. Our platform has been designed to quickly iterate around a design cycle of four protein coding sequences per plasmid, with larger numbers possible with multiplexed genome integrations in Saccharomyces cerevisiae. This work highlights how developing scalable new biotechnology applications requires a close integration between software development, liquid handling robotics, and protocol development.
引用
收藏
页码:291 / 297
页数:7
相关论文
共 1 条
  • [1] A Rapid Antibody Enhancement Platform in Saccharomyces cerevisiae Using an Improved, Diversifying CRISPR Base Editor
    Cazier, Andrew P.
    Irvin, Olivia M.
    Chavez, Lizmarie S.
    Dalvi, Saachi
    Abraham, Hannah
    Wickramanayake, Nevinka
    Yellayi, Sreenivas
    Blazeck, John
    ACS SYNTHETIC BIOLOGY, 2023, 12 (11): : 3287 - 3300