Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery

被引:72
作者
Bhattacharya, Pallab [1 ,2 ,3 ,4 ,6 ,7 ]
Lee, Joong Hee [2 ,3 ,5 ]
Kar, Kamal K. [6 ,7 ]
Park, Ho Seok [1 ,8 ,9 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Chem Engn, 2066 Seobu Ro, Suwon 440746, South Korea
[2] Chonbuk Natl Univ, Adv Mat Inst BIN Convergence Technol BK Plus Glob, Jeonju 54896, Jeonbuk, South Korea
[3] Chonbuk Natl Univ, Dept BIN Convergence Technol, Jeonju 54896, Jeonbuk, South Korea
[4] Natl Met Lab NML Jamshedpur, CSIR, Jamshedpur 831007, Jharkhand, India
[5] Chonbuk Natl Univ, Dept Polymer & Nano Sci & Technol, Carbon Composite Res Ctr, Jeonju 54896, Jeonbuk, South Korea
[6] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
[7] Indian Inst Technol Kanpur, Mat Sci Program, Adv Nanoengn Mat Lab, Kanpur 208016, Uttar Pradesh, India
[8] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, 2066 Seoburo, Suwon 440746, South Korea
[9] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Sch Chem Engn, 2066 Seoburo, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Nanoarchitecture; Volumetric capacity; Transition metal oxide; Carbon nanotube; Lithium ion battery; REVERSIBLE CONVERSION REACTION; ANODE MATERIAL; HOLLOW SPHERES; COATED SNO2; STORAGE; NANOSHEETS; ELECTRODE; NANOSTRUCTURES; NANOPARTICLES; NANOSPHERES;
D O I
10.1016/j.cej.2019.03.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructing nanostructures of high capacity materials and hybridizing the same with conductive carbon networks are important for high performing lithium ion batteries. Here, we demonstrate new carambola-shaped crystalline SnO2 (c-SnO2), which is wrapped in a three-dimensional multiwalled carbon nanotube network (c-SnO2@3D-CNT). The carambola structure of c-SnO2 is constructed by changing the surface energy of a specific crystalline plane using a potassium fluoride capping agent. The as-designed c-SnO2@3D-CNT achieves a high capacity of 1140.2 mA.h.g(-1) at 50 mA.g(-1), a capacity retention of 50.7% retained at 1000 mA.g(-1) relative to 50 mA.g(-1), and a cycling stability of 72.0% over 500 cycles at a high rate of 1000 mA.g(-1). In particular, the c-SnO2@3D-CNT shows a high volumetric capacity of 1674.8 mA.h.cm(-3) at 50 mA.g(-1) and 849.2 mA.h.cm(-3) at 1000 mA.g(-1), which is greater than those of previous SnO2-based materials. This finding is associated with the compact packing of hierarchical carambola structure having multiple concave surfaces into dense and porous electrode. Therefore, the hierarchical carambola structure and 3D hybrid architecture provide a buffer space for volume expansion and fast ion/electronic conducting pathways, which impart a high volumetric capacity, improved cyclic and rate performances, and higher reversibility than other SnO2 materials.
引用
收藏
页码:422 / 431
页数:10
相关论文
共 68 条
[1]   Study of Influence of Electrode Geometry on Impedance Spectroscopy [J].
Ahmed, Riaz ;
Reifsnider, Ken .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (04) :1159-1174
[2]  
[Anonymous], 2013, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.201301622
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[6]   Iron Oxide Nanoparticle-Encapsulated CNT Branches Grown on 3D Ozonated CNT Internetworks for Lithium-Ion Battery Anodes [J].
Bhattacharya, Pallab ;
Suh, Dong Hoon ;
Nakhanivej, Puritut ;
Kang, Yingbo ;
Park, Ho Seok .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (29)
[7]   Biomimetic Spider-Web-Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes [J].
Bhattacharya, Pallab ;
Kota, Manikantan ;
Suh, Dong Hoon ;
Roh, Kwang Chul ;
Park, Ho Seok .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[8]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[9]   SnO2 and TiO2 nanosheets for lithium-ion batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
MATERIALS TODAY, 2012, 15 (06) :246-254
[10]   Highly loaded SnO2/mesoporous carbon nanohybrid with well-improved lithium storage capability [J].
Chen, Lian ;
Wu, Ping ;
Wang, Hui ;
Ye, Ya ;
Xu, Bin ;
Cao, Gaoping ;
Zhou, Yiming ;
Lu, Tianhong ;
Yang, Yusheng .
JOURNAL OF POWER SOURCES, 2014, 247 :178-183