Seasonal cycles in short-lived hydrocarbons in baseline air masses arriving at Mace Head, Ireland

被引:13
作者
Derwent, Richard G. [1 ]
Simmonds, Peter G. [2 ]
O'Doherty, Simon [2 ]
Grant, Aoife [2 ]
Young, Dickon [2 ]
Cooke, Michael C. [2 ]
Manning, Alistair J. [3 ]
Utembe, Steven R. [2 ]
Jenkin, Michael E. [4 ]
Shallcross, Dudley E. [2 ]
机构
[1] Rdscientific, Newbury, Berks, England
[2] Univ Bristol, Sch Chem, Bristol, Avon, England
[3] Met Off, Exeter, Devon, England
[4] Atmospher Chem Serv, Okehampton, Devon, England
基金
英国自然环境研究理事会;
关键词
C-2-C-5; hydrocarbons; Seasonal cycles; OH; IN-SITU MEASUREMENTS; NONMETHANE HYDROCARBONS; GLOBAL DISTRIBUTION; BOUNDARY-LAYER; HO2; RADICALS; OH; TROPOSPHERE; EMISSION; ATLANTIC; HALOCARBONS;
D O I
10.1016/j.atmosenv.2012.08.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The observed seasonal cycles of a selection of reactive hydrocarbons in baseline air masses at Mace Head, Ireland are consistent with a simple picture of largely man-made sources and oxidation by hydroxyl (OH) radicals. M a result, the observed seasonal cycles become more pronounced the more reactive the species are with OH. For the pentanes, the assumption of little wintertime removal breaks down, leading to an apparent dampening of the seasonal cycles relative to ethane, propane and the butanes. A global chemistry-transport model is used to describe the seasonal cycles of the hydrocarbons at Mace Head and provided an accurate description of their observed amplitudes and phases. The model derived local OH concentrations in baseline air masses required to support the observed seasonal cycles of the hydrocarbons averaged 1.38 +/- 1.1 x 10(6) molecule cm(-3). Peak daytime levels during summertime reached 12 x 10(7) molecule cm(-3). (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 35 条
[1]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[2]   Atmospheric degradation of volatile organic compounds [J].
Atkinson, R ;
Arey, J .
CHEMICAL REVIEWS, 2003, 103 (12) :4605-4638
[3]  
Atkinson R., 1994, J PHYS CHEM REF DATA, V2, P1
[4]   Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOX emission controls [J].
Collins, WJ ;
Stevenson, DS ;
Johnson, CE ;
Derwent, RG .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 26 (03) :223-274
[5]   Impacts of formaldehyde photolysis rates on tropospheric chemistry [J].
Cooke, M. C. ;
Utembe, S. R. ;
Carbajo, P. Gorrotxategi ;
Archibald, A. T. ;
Orr-Ewing, A. J. ;
Jenkin, M. E. ;
Derwent, R. G. ;
Lary, D. J. ;
Shallcross, D. E. .
ATMOSPHERIC SCIENCE LETTERS, 2010, 11 (01) :33-38
[6]   A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland [J].
Grant, A. ;
Yates, E. L. ;
Simmonds, P. G. ;
Derwent, R. G. ;
Manning, A. J. ;
Young, D. ;
Shallcross, D. E. ;
O'Doherty, S. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (05) :955-964
[7]   Ten years of light hydrocarbons (C2-C6) concentration measurements in background air in Finland [J].
Hakola, Hannele ;
Hellen, Heidi ;
Laurila, Tuomas .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (19) :3621-3630
[8]   Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways [J].
Henze, D. K. ;
Seinfeld, J. H. ;
Ng, N. L. ;
Kroll, J. H. ;
Fu, T. -M. ;
Jacob, D. J. ;
Heald, C. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (09) :2405-2420
[9]   Non-methane hydrocarbons in the Arctic boundary layer [J].
Hopkins, JR ;
Jones, ID ;
Lewis, AC ;
McQuaid, JB ;
Seakins, PW .
ATMOSPHERIC ENVIRONMENT, 2002, 36 (20) :3217-3229
[10]   Continental outflow from the US to the upper troposphere over the north Atlantic during the NASA INTEX-NA airborne campaign [J].
Kim, S. Y. ;
Talbot, R. ;
Mao, H. ;
Blake, D. ;
Vay, S. ;
Fuelberg, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (07) :1989-2005