The cubicity of hypercube graphs

被引:9
作者
Chandran, L. Sunil [1 ]
Sivadasan, Naveen [2 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
[2] TCS, Adv Technol Ctr, Hyderabad 500081, Andhra Pradesh, India
关键词
Cubicity; Boxicity; Hypercube;
D O I
10.1016/j.disc.2007.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, its cubicity cub(G) is the minimum dimension k such that G is representable as the intersection graph of (axis-parallel) cubes in k-dimensional space. (A k-dimensional cube is a Cartesian product R-1 x R-2 x ... x R-k, where R-i is a closed interval of the form [a(i), a(i) + 1] on the real line.) Chandran et al. [L.S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Information Processing Letters 94 (2005) 113-118] showed that for a d-dimensional hypercube H-d, d-1/log d <= cub(H-d) <= 2d. In this paper, we use the probabilistic method to show that cub(H-d)=Theta(d/log d). The parameter boxicity generalizes cubicity: the boxicity box(G) of a graph G is defined as the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes in k-dimensional space. Since box(G) :5 cub(G) for any graph G, our result implies that box(H-d) = O (d/log d). The problem of determining a non-trivial lower bound for box(H-d) is left open. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5795 / 5800
页数:6
相关论文
共 17 条
  • [1] [Anonymous], THESIS RUTGERS U NEW
  • [2] [Anonymous], 1984, THESIS PRINCETON U
  • [3] GRID INTERSECTION GRAPHS AND BOXICITY
    BELLANTONI, S
    HARTMAN, IB
    PRZYTYCKA, T
    WHITESIDES, S
    [J]. DISCRETE MATHEMATICS, 1993, 114 (1-3) : 41 - 49
  • [4] Boxicity and treewidth
    Chandran, L. Sunil
    Sivadasan, Naveen
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 733 - 744
  • [5] On the cubicity of certain graphs
    Chandran, LS
    Mannino, C
    Oriolo, G
    [J]. INFORMATION PROCESSING LETTERS, 2005, 94 (03) : 113 - 118
  • [6] Chang Y.-W., 1998, 29 SE C COMB GRAPH T, V132, P19
  • [7] Chang Y. W., 1998, P 8 INT GRAPH THEOR
  • [8] COMPUTING THE BOXICITY OF A GRAPH BY COVERING ITS COMPLEMENT BY COINTERVAL GRAPHS
    COZZENS, MB
    ROBERTS, FS
    [J]. DISCRETE APPLIED MATHEMATICS, 1983, 6 (03) : 217 - 228
  • [9] CIRCULAR DIMENSION OF A GRAPH
    FEINBERG, RB
    [J]. DISCRETE MATHEMATICS, 1979, 25 (01) : 27 - 31
  • [10] OPTIMAL PACKING AND COVERING IN THE PLANE ARE NP-COMPLETE
    FOWLER, RJ
    PATERSON, MS
    TANIMOTO, SL
    [J]. INFORMATION PROCESSING LETTERS, 1981, 12 (03) : 133 - 137