Adaptive Inverse Control of Piezoelectric Actuators Based on Segment Similarity

被引:26
作者
Liu, Xiangdong [1 ]
Huang, Mengqi [1 ]
Xiong, Rui [2 ]
Shan, Jinjun [3 ]
Mao, Xuefei [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Beijing Inst Sci & Technol Informat, Beijing 100192, Peoples R China
[3] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
基金
中国国家自然科学基金;
关键词
Hysteresis compensation; piezoelectric actuator (PEA); segment similarity; HYSTERESIS; COMPENSATION; MODEL; ISSUES;
D O I
10.1109/TIE.2018.2868011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hysteresis behavior of piezoelectric actuators is primarily responsible for the decrease of the precision and performance of the nanopositioning systems. To compensate for hysteresis, an inverse model is proposed in this paper as a segment similarity feedforward compensator. Furthermore, the inverse model is improved by using an adaptive method to eliminate the accumulated error of the similarity compensator. The proposed adaptive similarity compensator has the advantages of simple structure, less storage space, and fast calculation speed, and it is available for most engineering situations. Experiments are carried out with the proposed similarity compensator and adaptive similarity compensator. The experimental results show that the compensator can achieve good results and better performance, especially for high-frequency excitations.
引用
收藏
页码:5403 / 5411
页数:9
相关论文
共 29 条
[1]   Design of Implementable Adaptive Control for Micro/Nano Positioning System Driven by Piezoelectric Actuator [J].
Chen, Xinkai ;
Su, Chun-Yi ;
Li, Zhi ;
Yang, Fan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (10) :6471-6481
[2]   A CONSTITUTIVE RELATION FOR RATE-INDEPENDENT HYSTERESIS IN FERROMAGNETICALLY SOFT MATERIALS [J].
COLEMAN, BD ;
HODGDON, ML .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1986, 24 (06) :897-919
[3]   A survey of control issues in nanopositioning [J].
Devasia, Santosh ;
Eleftheriou, Evangelos ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :802-823
[4]   A neural networks based model for rate-dependent hysteresis for piezoceramic actuators [J].
Dong, Ruili ;
Tan, Yonghong ;
Chen, Hui ;
Xie, Yangqiu .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 143 (02) :370-376
[5]   Adaptive simulation of hysteresis using neuro-Madelung model [J].
Farrokh, Mojtaba ;
Dizaji, Mehrdad S. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (13) :1713-1724
[6]   Modeling piezoelectric stack actuators for control of micromanipulation [J].
Goldfarb, M ;
Celanovic, N .
IEEE CONTROL SYSTEMS MAGAZINE, 1997, 17 (03) :69-79
[7]   Real-time compensation of hysteresis and creep in piezoelectric actuators [J].
Janocha, H ;
Kuhnen, K .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 79 (02) :83-89
[8]   Inverse control of systems with hysteresis and creep [J].
Krejci, P ;
Kuhnen, K .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (03) :185-192
[9]  
Kuhnen K, 2015, CONTROL C, P791
[10]   A novel similarity-based hysteresis empirical model for piezoceramic actuators [J].
Lai, Zhi-Lin ;
Chen, Zhen ;
Liu, Xiang-Dong ;
Wu, Qing-He .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 197 :150-165