Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium

被引:554
作者
Cui, Wei-Rong [1 ]
Zhang, Cheng-Rong [1 ]
Jiang, Wei [1 ]
Li, Fang-Fang [1 ]
Liang, Ru-Ping [1 ]
Liu, Juewen [2 ]
Qiu, Jian-Ding [1 ]
机构
[1] Nanchang Univ, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
EFFICIENT; REMOVAL; NANOPARTICLES; ADSORPTION; NANOSHEETS; SENSOR; SITES;
D O I
10.1038/s41467-020-14289-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uranium is a key element in the nuclear industry, but its unintended leakage has caused health and environmental concerns. Here we report a sp(2) carbon-conjugated fluorescent covalent organic framework (COF) named TFPT-BTAN-AO with excellent chemical, thermal and radiation stability is synthesized by integrating triazine-based building blocks with amidoxime-substituted linkers. TFPT-BTAN-AO shows an exceptional UO22+ adsorption capacity of 427mgg(-1) attributable to the abundant selective uranium-binding groups on the highly accessible pore walls of open 1D channels. In addition, it has an ultra-fast response time (2s) and an ultra-low detection limit of 6.7nM UO22+ suitable for on-site and real-time monitoring of UO22+, allowing not only extraction but also monitoring the quality of the extracted water. This study demonstrates great potential of fluorescent COFs for radionuclide detection and extraction. By rational designing target ligands, this strategy can be extended to the detection and extraction of other contaminants. Porous materials for uranium capture have been developed in the past, but materials for simultaneous uranium capture and detection are scarce. Here the authors develop a stable covalent organic framework capable of adsorbing and detecting uranyl ions.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Materials for the Recovery of Uranium from Seawater [J].
Abney, Carter W. ;
Mayes, Richard T. ;
Saito, Tomonori ;
Dai, Sheng .
CHEMICAL REVIEWS, 2017, 117 (23) :13935-14013
[2]   Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery [J].
Aguila, Briana ;
Sun, Qi ;
Cassady, Harper ;
Abney, Carter W. ;
Li, Baiyan ;
Mai, Shengqian .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) :30919-30926
[3]   Efficient Mercury Capture Using Functionalized Porous Organic Polymer [J].
Aguila, Briana ;
Sun, Qi ;
Perman, Jason A. ;
Earl, Lyndsey D. ;
Abney, Carter W. ;
Elzein, Radwan ;
Schlaf, Rudy ;
Ma, Shengqian .
ADVANCED MATERIALS, 2017, 29 (31)
[4]   Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst [J].
Aiyappa, Harshitha Barike ;
Thote, Jayshri ;
Shinde, Digambar Balaji ;
Banerjee, Rahul ;
Kurungot, Sreekumar .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4375-4379
[5]   Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan [J].
Barber, Patrick S. ;
Kelley, Steven P. ;
Griggs, Chris S. ;
Wallace, Sergei ;
Rogers, Robin D. .
GREEN CHEMISTRY, 2014, 16 (04) :1828-1836
[6]   Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic E-Z Isomerization of Olefins [J].
Bhadra, Mohitosh ;
Kandambeth, Sharath ;
Sahoo, Manoj K. ;
Addicoat, Matthew ;
Balaraman, Ekambaram ;
Banerjee, Rahul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (15) :6152-6156
[7]   Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis [J].
Bhadra, Mohitosh ;
Sasmal, Himadri Sekhar ;
Basu, Arghya ;
Midya, Siba P. ;
Kandambeth, Sharath ;
Pachfule, Pradip ;
Balaraman, Ekambaram ;
Banerjee, Rahul .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13785-13792
[8]   Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms [J].
Bi, Shuai ;
Yang, Can ;
Zhang, Wenbei ;
Xu, Junsong ;
Liu, Lingmei ;
Wu, Dongqing ;
Wang, Xinchen ;
Han, Yu ;
Liang, Qifeng ;
Zhang, Fan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Designed Synthesis of a 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis [J].
Chen, Rufan ;
Shi, Ji-Long ;
Ma, Yuan ;
Lin, Guiqing ;
Lang, Xianjun ;
Wang, Cheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (19) :6430-6434
[10]   Covalent Organic Framework Nanosheets for Fluorescence Sensing via Metal Coordination [J].
Cui, Wei-Rong ;
Zhang, Cheng-Rong ;
Jiang, Wei ;
Liang, Ru-Ping ;
Qiu, Jian-Ding .
ACS APPLIED NANO MATERIALS, 2019, 2 (08) :5342-5349