Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror

被引:68
作者
Rodrigues Pinto, Ana Margarida [1 ]
Lopez-Amo, Manuel [1 ]
Kobelke, Jens [2 ]
Schuster, Kay [2 ]
机构
[1] Univ Publ Navarra, Dept Ingn Elect & Elect, Pamplona 31006, Spain
[2] Inst Photon Technol, D-07702 Jena, Germany
关键词
Temperature sensor; fiber laser; Raman amplification; Fabry-Perot interferometer; microstructured fiber; Rayleigh scattering; INTERFEROMETER;
D O I
10.1109/JLT.2011.2170814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the present work, a simple temperature fiber laser sensor configuration is proposed. The temperature fiber laser sensor is based in the combination of a Fabry-Perot hybrid cavity and a random mirror. The Fabry-Perot hybrid cavity is fabricated by splicing a single mode fiber with a small piece of suspended-core fiber. The random mirror is created by multiple Rayleigh scattering events running along the dispersion compensation fiber, as a direct consequence of Raman gain in this fiber. In the proposed configuration, the Fabry-Perot cavity presents simultaneously a double function: laser reflective mirror and temperature sensing cavity. The proposed temperature fiber laser sensor presents maximum output power of similar to 4 mW in a 15nm wavelength range while providing a temperature sensibility of similar to 6 pm/degrees C, in a 200 degrees C temperature range.
引用
收藏
页码:1168 / 1172
页数:5
相关论文
共 19 条
  • [1] Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference
    Chen, Ji-Huan
    Huang, Xu-Guang
    Huang, Zhen-Jian
    [J]. OPTICAL ENGINEERING, 2010, 49 (04)
  • [2] Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index
    Choi, Hae Young
    Mudhana, Gopinath
    Park, Kwan Seob
    Paek, Un-Chul
    Lee, Byeong Ha
    [J]. OPTICS EXPRESS, 2010, 18 (01): : 141 - 149
  • [3] Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer
    Choi, Hae Young
    Park, Kwan Seoh
    Park, Seong Jun
    Paek, Un-Chul
    Lee, Byeong Ha
    Choi, Eun Seo
    [J]. OPTICS LETTERS, 2008, 33 (21) : 2455 - 2457
  • [4] Duan Y. J. R. D. W., 2011, ELECTRON LETT, V47, P401
  • [5] Resilient long-distance sensor system using a multiwavelength Raman laser
    Fernandez-Vallejo, M.
    Diaz, S.
    Perez-Herrera, R. A.
    Passaro, D.
    Selleri, S.
    Quintela, M. A.
    Lopez Higuera, J. M.
    Lopez-Amo, M.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (09)
  • [6] Optical-fiber sensors
    Fernando, GF
    Webb, DJ
    Ferdinand, P
    [J]. MRS BULLETIN, 2002, 27 (05) : 359 - 364
  • [7] Low-loss splice in a microstructured fibre using a conventional fusion splicer
    Frazao, O
    Carvalho, JP
    Salgado, HM
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (02) : 172 - 174
  • [8] Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement
    Frazao, O.
    Correia, C.
    Santos, J. L.
    Baptista, J. M.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (04)
  • [9] OPTICAL FIBER SENSOR TECHNOLOGY
    GIALLORENZI, TG
    BUCARO, JA
    DANDRIDGE, A
    SIGEL, GH
    COLE, JH
    RASHLEIGH, SC
    PRIEST, RG
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (04) : 626 - 665
  • [10] Headley C., 2005, Raman Amplification in Fiber Optical Communication Systems