Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror

被引:68
作者
Rodrigues Pinto, Ana Margarida [1 ]
Lopez-Amo, Manuel [1 ]
Kobelke, Jens [2 ]
Schuster, Kay [2 ]
机构
[1] Univ Publ Navarra, Dept Ingn Elect & Elect, Pamplona 31006, Spain
[2] Inst Photon Technol, D-07702 Jena, Germany
关键词
Temperature sensor; fiber laser; Raman amplification; Fabry-Perot interferometer; microstructured fiber; Rayleigh scattering; INTERFEROMETER;
D O I
10.1109/JLT.2011.2170814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the present work, a simple temperature fiber laser sensor configuration is proposed. The temperature fiber laser sensor is based in the combination of a Fabry-Perot hybrid cavity and a random mirror. The Fabry-Perot hybrid cavity is fabricated by splicing a single mode fiber with a small piece of suspended-core fiber. The random mirror is created by multiple Rayleigh scattering events running along the dispersion compensation fiber, as a direct consequence of Raman gain in this fiber. In the proposed configuration, the Fabry-Perot cavity presents simultaneously a double function: laser reflective mirror and temperature sensing cavity. The proposed temperature fiber laser sensor presents maximum output power of similar to 4 mW in a 15nm wavelength range while providing a temperature sensibility of similar to 6 pm/degrees C, in a 200 degrees C temperature range.
引用
收藏
页码:1168 / 1172
页数:5
相关论文
共 19 条
[1]   Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference [J].
Chen, Ji-Huan ;
Huang, Xu-Guang ;
Huang, Zhen-Jian .
OPTICAL ENGINEERING, 2010, 49 (04)
[2]   Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index [J].
Choi, Hae Young ;
Mudhana, Gopinath ;
Park, Kwan Seob ;
Paek, Un-Chul ;
Lee, Byeong Ha .
OPTICS EXPRESS, 2010, 18 (01) :141-149
[3]   Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer [J].
Choi, Hae Young ;
Park, Kwan Seoh ;
Park, Seong Jun ;
Paek, Un-Chul ;
Lee, Byeong Ha ;
Choi, Eun Seo .
OPTICS LETTERS, 2008, 33 (21) :2455-2457
[4]  
Duan Y. J. R. D. W., 2011, ELECTRON LETT, V47, P401
[5]   Resilient long-distance sensor system using a multiwavelength Raman laser [J].
Fernandez-Vallejo, M. ;
Diaz, S. ;
Perez-Herrera, R. A. ;
Passaro, D. ;
Selleri, S. ;
Quintela, M. A. ;
Lopez Higuera, J. M. ;
Lopez-Amo, M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (09)
[6]   Optical-fiber sensors [J].
Fernando, GF ;
Webb, DJ ;
Ferdinand, P .
MRS BULLETIN, 2002, 27 (05) :359-364
[7]   Low-loss splice in a microstructured fibre using a conventional fusion splicer [J].
Frazao, O ;
Carvalho, JP ;
Salgado, HM .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (02) :172-174
[8]   Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement [J].
Frazao, O. ;
Correia, C. ;
Santos, J. L. ;
Baptista, J. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (04)
[9]   OPTICAL FIBER SENSOR TECHNOLOGY [J].
GIALLORENZI, TG ;
BUCARO, JA ;
DANDRIDGE, A ;
SIGEL, GH ;
COLE, JH ;
RASHLEIGH, SC ;
PRIEST, RG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (04) :626-665
[10]  
Headley C., 2005, Raman Amplification in Fiber Optical Communication Systems