Tsallis entropy induced metrics and CAT(k) spaces

被引:11
|
作者
Kalogeropoulos, Nikos [1 ]
机构
[1] Weill Cornell Med Coll Qatar, Doha, Qatar
关键词
Tsallis entropy; Nonextensive entropy; Nonextensive statistical mechanics; CAT(k); HOMOGENEOUS MANIFOLDS; ALGEBRA; CALCULUS; THEOREM;
D O I
10.1016/j.physa.2012.02.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalizing the group structure of the Euclidean space, we construct a Riemannian metric on the deformed set R-q(n) induced by the Tsallis entropy composition property. We show that the Tsallis entropy is a "hyperbolic analogue" of the "Euclidean" Boltzmann/Gibbs/Shannon entropy and find a geometric interpretation for the nonextensive parameter q. We provide a geometric explanation of the uniqueness of the Tsallis entropy as reflected through its composition property, which is provided by the Abe and the Santos axioms. For two, or more, interacting systems described by the Tsallis entropy, having different values of q, we argue why a suitable extension of this construction is provided by the Cartan/Alexandrov/Toponogov metric spaces with a uniform negative curvature upper bound. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3435 / 3445
页数:11
相关论文
共 50 条
  • [31] QUADRATIC TSALLIS ENTROPY BIAS AND GENERALIZED MAXIMUM ENTROPY MODELS
    Hou, Yuexian
    Wang, Bo
    Song, Dawei
    Cao, Xiaochun
    Li, Wenjie
    COMPUTATIONAL INTELLIGENCE, 2014, 30 (02) : 233 - 262
  • [32] The effect of imperfect rankings on Tsallis entropy in ranked set sampling scheme
    Eftekharian, Abbas
    Razmkhah, Mostafa
    STATISTICS, 2025,
  • [33] Measuring the complexity of complex network by Tsallis entropy
    Wen, Tao
    Jiang, Wen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [34] Generalized Maxwell Distribution in the Tsallis Entropy Formalism
    T. N. Bakiev
    D. V. Nakashidze
    A. M. Savchenko
    K. M. Semenov
    Moscow University Physics Bulletin, 2022, 77 : 728 - 740
  • [35] QUANTUM DISCORD DERIVED FROM TSALLIS ENTROPY
    Jurkowski, Jacek
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (01)
  • [36] Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
    de Lima, Igo Pedro
    da Silva, Sergio Luiz E. F.
    Corso, Gilberto
    de Araujo, Joao M.
    ENTROPY, 2020, 22 (04)
  • [37] TSALLIS ENTROPY THEORY FOR DERIVATION OF INFILTRATION EQUATIONS
    Singh, V. P.
    TRANSACTIONS OF THE ASABE, 2010, 53 (02) : 447 - 463
  • [38] Generalized uncertainty relations of Tsallis entropy on FrFT
    Xu Guanlei
    Xu Xiaogang
    Wang Xiaotong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 9 - 16
  • [39] Microcanonical equations obtained from the Tsallis entropy
    Carrete, J.
    Varela, L. M.
    Gallego, L. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (27) : 6752 - 6758
  • [40] Pattern Recognition via PCNN and Tsallis Entropy
    Zhang, YuDong
    Wu, LeNan
    SENSORS, 2008, 8 (11): : 7518 - 7529