Bogdanov-Takens bifurcation in a single inertial neuron model with delay

被引:96
作者
He, Xing [1 ]
Li, Chuandong [1 ]
Shu, Yonglu [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Bogdanov-Takens bifurcation; Inertial neuron model; Homoclinic bifurcation; Heteroclinic bifurcation; FUNCTIONAL-DIFFERENTIAL EQUATIONS; NORMAL FORMS; STABILITY; DYNAMICS; SYSTEMS; CHAOS;
D O I
10.1016/j.neucom.2012.02.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a retarded functional differential equation modeling a single neuron with inertial term subject to time delay. Bogdanov-Takens bifurcation is investigated by using center manifold reduction and the normal form method for RFDE. We get the versal unfolding of the norm forms at the B-T singularity and show that the model can exhibit saddle-node bifurcation, pitchfork bifurcation, homoclinic bifurcation, heteroclinic bifurcation and double limit cycle bifurcation. Some numerical simulations are given to support the analytic results. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[2]   DYNAMICS OF SIMPLE ELECTRONIC NEURAL NETWORKS [J].
BABCOCK, KL ;
WESTERVELT, RM .
PHYSICA D, 1987, 28 (03) :305-316
[3]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[4]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS AND APPLICATIONS TO BOGDANOV-TAKENS SINGULARITY [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :201-224
[5]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200
[6]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[7]   NEURONS WITH GRADED RESPONSE HAVE COLLECTIVE COMPUTATIONAL PROPERTIES LIKE THOSE OF 2-STATE NEURONS [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (10) :3088-3092
[8]  
Jagger D.J., 2009, NEURAL NETWORKS, V22, P1411
[9]   Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback [J].
Jiang, Weihua ;
Yuan, Yuan .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (02) :149-161
[10]   Hopf bifurcation and chaos in a single inertial neuron model with time delay [J].
Li, CG ;
Chen, GR ;
Liao, XF ;
Yu, JB .
EUROPEAN PHYSICAL JOURNAL B, 2004, 41 (03) :337-343