Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

被引:8
作者
Martin, Sebastien [1 ]
Vovelle, Julien [2 ]
机构
[1] Univ Paris 11, Math Lab, CNRS UMR 8628, F-91405 Orsay, France
[2] CNRS, UMR 6625, ENS Cachan Antenne Bretagne IRMAR, F-35170 Bruz, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 05期
关键词
Finite Volume scheme; conservation law; discontinuous flux;
D O I
10.1051/m2an:2008023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687-705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial problem. We show the well-posedness of the scheme and the convergence of the numerical solution to the entropy solution of the continuous problem. Numerical simulations are presented in the framework of Riemann problems related to discontinuous transport equation, discontinuous Burgers equation, discontinuous LWR equation and discontinuous non-autonomous Buckley-Leverett equation (lubrication theory).
引用
收藏
页码:699 / 727
页数:29
相关论文
共 50 条
[21]   Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method [J].
Ruf, Adrian M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) :1116-1142
[22]   Convergence of finite volume schemes for triangular systems of conservation laws [J].
Hvistendahl, Kenneth ;
Mishra, Siddhartha ;
Risebro, Nils Henrik .
NUMERISCHE MATHEMATIK, 2009, 111 (04) :559-589
[23]   Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients [J].
Seguin, N ;
Vovelle, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (02) :221-257
[24]   MONOTONE (A, B) ENTROPY STABLE NUMERICAL SCHEME FOR SCALAR CONSERVATION LAWS WITH DISCONTINUOUS FLUX [J].
Adimurthi ;
Dutta, Rajib ;
Gowda, G. D. Veerappa ;
Jaffre, Jerome .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (06) :1725-1755
[25]   Scalar conservation laws with general boundary condition and continuous flux function [J].
Ammar, Kaouther ;
Wittbold, Petra ;
Carrillo, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :111-139
[26]   CONVERGENCE OF THE FINITE-VOLUME METHOD FOR MULTIDIMENSIONAL CONSERVATION-LAWS [J].
COCKBURN, B ;
COQUEL, F ;
LEFLOCH, PG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :687-705
[27]   Conservation laws with discontinuous flux: a short introduction [J].
Raimund Bürger ;
Kenneth H. Karlsen .
Journal of Engineering Mathematics, 2008, 60 :241-247
[28]   Fractional regularity for conservation laws with discontinuous flux [J].
Ghoshal, Shyam Sundar ;
Junca, Stephane ;
Parmar, Akash .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 75
[29]   Conservation laws with discontinuous flux:: a short introduction [J].
Burger, Raimund ;
Karlsen, Kenneth H. .
JOURNAL OF ENGINEERING MATHEMATICS, 2008, 60 (3-4) :241-247
[30]   A new modified Local Lax-Friedrichs scheme for scalar conservation laws with discontinuous flux [J].
Sun, Xia ;
Wang, Guodong ;
Ma, Yanying .
APPLIED MATHEMATICS LETTERS, 2020, 105