Ionic-Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells

被引:98
作者
Yuan, Haocheng [1 ,2 ]
Ma, Fengxin [1 ]
Wei, Xianbin [1 ]
Lan, Jin-Le [1 ]
Liu, Yuan [3 ]
Yu, Yunhua [1 ]
Yang, Xiaoping [1 ]
Park, Ho Seok [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, North Third Ring Rd 15, Beijing 100029, Peoples R China
[2] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon Si 440746, Gyeonggi Do, Peoples R China
[3] Qingdao Univ, Coll Mat Sci & Engn, Inst Biochem Engn, State Key Lab Biofibers & Ecotext, 308 Ningxia Rd, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
alloy anodes; ether electrolytes; full cells; sodium ion batteries; solid electrolyte interphases; ANODE MATERIAL; NA-ION; PERFORMANCE; BISMUTH; STORAGE; INTERCALATION; CAPACITY; CATHODE; DESIGN; ETHER;
D O I
10.1002/aenm.202001418
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy storage performance of sodium-ion batteries has been greatly improved by pairing ether-based electrolytes with high-capacity alloy-type anodes. However, the origin of this performance improvement by a unique electrode/electrolyte interface has yet to be explored. To understand such results, herein, the deterministic and distinct interfacial chemistries and solid electrolyte interphase (SEI) layers in both the ether- and ester-based electrolytes are described, as verified by post mortem, in-depth X-ray photoelectron spectroscopy, and electron energy loss spectroscopy analyses, employing a hierarchical Bi/C composite anode as the model system. In the ether-based electrolyte, fast sodium-ion storage kinetics and structural integrity are achieved due to the highly ionic-conducting and robust multi-layered SEI consisting of an inner dense bismuth-containing inorganic and outer polyether layer. No drastic capacity decay is observed over 1000 cycles and high capacity retention of 89% is achieved, increasing rates from 0.1 to 10 A g(-1). The benefit of this SEI is confirmed to demonstrate a high energy density of 162 Wh kg(-1)in a full-cell and a high areal capacity of 3.3 mAh cm(-2)even at a high mass loading of 11 mg cm(-2), which is nearly equivalent to the loading of commercial lithium-ion battery anodes.
引用
收藏
页数:12
相关论文
共 56 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[3]   Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Kim, Kyungho ;
Ahn, Kihong ;
Cho, Jaephil .
JOULE, 2017, 1 (01) :47-60
[4]   C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage [J].
Chao, Dongliang ;
Ouyang, Bo ;
Liang, Pei ;
Tran Thi Thu Huong ;
Jia, Guichong ;
Huang, Hui ;
Xia, Xinhui ;
Rawat, Rajdeep Singh ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (49)
[5]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[6]   Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Ji, Xiao ;
Gao, Tao ;
Hou, Singyuk ;
Zhou, Xiuquan ;
Wang, Luning ;
Wang, Fei ;
Yang, Chongyin ;
Chen, Long ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1218-1225
[7]   High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries [J].
Chen, Weihua ;
Zhang, Xixue ;
Mi, Liwei ;
Liu, Chuntai ;
Zhang, Jianmin ;
Cui, Shizhong ;
Feng, Xiangming ;
Cao, Yuliang ;
Shen, Changyu .
ADVANCED MATERIALS, 2019, 31 (08)
[8]   Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries [J].
Cheng, Xiaolong ;
Li, Dongjun ;
Wu, Ying ;
Xu, Rui ;
Yu, Yan .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) :4913-4921
[9]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[10]   Sodium-Ion Batteries: From Academic Research to Practical Commercialization [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Chou, Shu-Lei ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (04)