High-temperature expansions of the higher susceptibilities for the Ising model in general dimension d

被引:11
作者
Butera, P. [1 ,2 ]
Pernici, M. [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy
[2] Ist Nazl Fis Nucl Sez Milano Bicocca, I-20126 Milan, Italy
[3] Ist Nazl Fis Nucl Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
关键词
SIZE-SCALING RELATIONS; VECTOR SPIN MODELS; CRITICAL EXPONENTS; BINDER PARAMETER; SERIES; AMPLITUDES; LATTICES; HEAT;
D O I
10.1103/PhysRevE.86.011139
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The high-temperature expansion coefficients of the ordinary and the higher susceptibilities of the spin-1/2 nearest-neighbor Ising model are calculated exactly up to the 20th order for the general d-dimensional (hyper)simple-cubical lattices. These series are analyzed to study the dependence of critical parameters on the lattice dimensionality. Using the general d expression of the ordinary susceptibility, we have more than doubled the length of the existing series expansion of the critical temperature in powers of 1/d.
引用
收藏
页数:7
相关论文
共 42 条
[1]   The test of the finite-size scaling relations for the six-dimensional Ising model on the Creutz cellular automaton [J].
Aktekin, N ;
Erkoc, S .
PHYSICA A, 2000, 284 (1-4) :206-214
[2]   Simulation of the eight-dimensional Ising model on the Creutz cellular automaton [J].
Aktekin, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (02) :287-292
[3]   The test of the finite-size scaling relations for the seven-dimensional Ising model on the Creutz cellular automaton [J].
Aktekin, N ;
Erkoç, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 290 (1-2) :123-130
[4]   ANALYSIS OF HYPERSCALING IN ISING-MODEL BY HIGH-TEMPERATURE SERIES METHOD [J].
BAKER, GA .
PHYSICAL REVIEW B, 1977, 15 (03) :1552-1559
[5]   ON THE FERROMAGNETIC ISING-MODEL IN NONINTEGER SPATIAL DIMENSION [J].
BAKER, GA ;
BENOFY, LP .
JOURNAL OF STATISTICAL PHYSICS, 1982, 29 (04) :699-716
[6]   11TH-ORDER CALCULATION OF ISING-LIMIT GREENS-FUNCTIONS FOR SCALAR QUANTUM-FIELD THEORY IN ARBITRARY SPACE-TIME DIMENSION-D [J].
BENDER, CM ;
BOETTCHER, S .
PHYSICAL REVIEW D, 1995, 51 (04) :1875-1879
[7]   Extended scaling in high dimensions [J].
Berche, B. ;
Chatelain, C. ;
Dhall, C. ;
Kenna, R. ;
Low, R. ;
Walter, J-C .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[8]   REAL-SPACE RENORMALIZATION-GROUP STUDY OF FRACTAL ISING-MODELS [J].
BONNIER, B ;
LEROYER, Y ;
MEYERS, C .
PHYSICAL REVIEW B, 1988, 37 (10) :5205-5210
[9]   Yang-Lee edge singularities from extended activity expansions of the dimer density for bipartite lattices of dimensionality 2 ≤ d ≤ 7 [J].
Butera, P. ;
Pernici, M. .
PHYSICAL REVIEW E, 2012, 86 (01)
[10]   Triviality problem and high-temperature expansions of higher susceptibilities for the Ising and scalar-field models in four-, five-, and six-dimensional lattices [J].
Butera, P. ;
Pernici, M. .
PHYSICAL REVIEW E, 2012, 85 (02)