Trajectory tracking control of Skid-Steered Mobile Robot based on adaptive Second Order Sliding Mode Control

被引:77
作者
Matraji, Imad [1 ]
Al-Durra, Ahmed [1 ]
Haryono, Andri [1 ]
Al-Wahedi, Khaled [1 ]
Abou-Khousa, Mohamed [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Elect & Comp Engn, Sas Al Nakhl Campus, Abu Dhabi, U Arab Emirates
关键词
Skid Steered Mobile Robot; Trajectory tracking control; Adaptive Second Order Sliding Mode Control; Experimental validation; Image processing validation; DYNAMIC-MODEL; SYSTEMS; ORDER;
D O I
10.1016/j.conengprac.2017.11.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents design and implementation of adaptive Second Order Sliding Mode Control (SOSMC) for a four wheels Skid-Steered Mobile Robot (SSMR). The control objective is to follow a predefined trajectory by regulating the linear and angular velocities, and in presence of external disturbance and parametric uncertainty. Adaptive Super Twisting (AST) algorithm is designed in order to build a robust controller with neglected chattering in steady state. The proposed controller is validated experimentally. The results show that the proposed controller guarantees the performance of the conventional SOSMC under external disturbance and parametric uncertainty with less chattering. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 41 条
[11]   Tracking Control of Differential-Drive Wheeled Mobile Robots Using a Backstepping-Like Feedback Linearization [J].
Chwa, Dongkyoung .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2010, 40 (06) :1285-1295
[12]   Sliding mode control of robotic arms with deadzone [J].
de Jesus Rubio, Jose .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1214-1221
[13]   Modeling and control with neural networks for a magnetic levitation system [J].
de Jesus Rubio, Jose ;
Zhang, Lixian ;
Lughofer, Edwin ;
Cruz, Panuncio ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
NEUROCOMPUTING, 2017, 227 :113-121
[14]   Dynamic model based formation control and obstacle avoidance of multi-robot systems [J].
De la Cruz, Celso ;
Carelli, Ricardo .
ROBOTICA, 2008, 26 (03) :345-356
[15]  
DE PIERI E.R, 2014, IFAC Proceedings, V47, P3827, DOI [10.3182/20140824-6- ZA-1003.02210, DOI 10.3182/20140824-6-ZA-1003.02210]
[16]   Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots [J].
Emanuel Serrano, Mario ;
Eduardo Scaglia, Gustavo Juan ;
Auat Cheein, Fernando ;
Mut, Vicente ;
Alberto Ortiz, Oscar .
ROBOTICA, 2015, 33 (10) :2186-2203
[17]  
EMELYANOV SV, 1993, DIFF EQUAT+, V29, P1627
[18]  
Keighobadi J., 2011, INT FEDERATION AUTOM, P962, DOI [10.3182/20110828-6-IT-1002.03048, DOI 10.3182/20110828-6-IT-1002.03048]
[19]   Wheeled Mobile Robots Control in a Linear Platoon [J].
Klancar, Gregor ;
Matko, Drago ;
Blazic, Saso .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2009, 54 (05) :709-731
[20]  
Kozlowski K., 2004, International Journal of Applied Mathematics and Computer Science, V14, P477