A Hierarchical LiDAR Odometry via Maximum Likelihood Estimation With Tightly Associated Distributions

被引:4
作者
Wang, Chengpeng [1 ,2 ]
Cao, Zhiqiang [1 ,2 ]
Li, Jianjie [1 ,2 ]
Liang, Shuang [1 ,2 ]
Tan, Min [1 ,2 ]
Yu, Junzhi [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Peking Univ, Coll Engn, Dept Mech & Engn Sci, BIC ESAT,State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Laser radar; Feature extraction; Smoothing methods; Three-dimensional displays; Optimization; Simultaneous localization and mapping; 3D LiDAR odometry; fixed-lag smoothing; hierarchical optimization; maximum likelihood estimation; 3D POINT CLOUDS; SCAN REGISTRATION; SLAM; DISTANCE;
D O I
10.1109/TVT.2022.3183202
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
LiDAR odometry has gained popularity due to accurate depth measurement with the robustness to illuminations. However, existing distribution-based methods do not sufficiently exploit the information from source point cloud, which affects the odometry performance. In this paper, a novel distribution-to-distribution matching method is proposed based on maximum likelihood estimation to solve relative transformation, where source and target point sets are tightly jointed to represent the sampling distribution in the objective function. On this basis, a hierarchical 3D LiDAR odometry with the low-level scan-to-map matching and high-level fixed-lag smoothing is designed. With the decoupling strategy, the matching method is extended to a fixed-lag smoothing module and the heavy computation burden is overcome. Our smoothing module is universal, which can be attached to LiDAR odometry framework for performance improvement. The experiments on KITTI dataset, Newer College dataset, and large-scale KITTI-360 dataset verify the effectiveness of the proposed method.
引用
收藏
页码:10254 / 10268
页数:15
相关论文
共 52 条
  • [1] The normal distributions transform: A new approach to laser scan matching
    Biber, P
    [J]. IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 2743 - 2748
  • [2] Direct LiDAR Odometry: Fast Localization With Dense Point Clouds
    Chen, Kenny
    Lopez, Brett T.
    Agha-mohammadi, Ali-akbar
    Mehta, Ankur
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 2000 - 2007
  • [3] Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
  • [4] Cvisic I., J FIELD ROBOT, V35, P578
  • [5] Deschaud JE, 2018, IEEE INT CONF ROBOT, P2480
  • [6] Dube Renaud, 2018, IEEE Robotics and Automation Letters, V3, P1832, DOI 10.1109/LRA.2018.2803213
  • [7] Dube R., 2017, 2017 IEEE INT C ROB, P5266
  • [8] SegMap: Segment-based mapping and localization using data-driven descriptors
    Dube, Renaud
    Cramariuc, Andrei
    Dugas, Daniel
    Sommer, Hannes
    Dymczyk, Marcin
    Nieto, Juan
    Siegwart, Roland
    Cadena, Cesar
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3) : 339 - 355
  • [9] HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration
    Eckart, Benjamin
    Kim, Kihwan
    Kautz, Jan
    [J]. COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 730 - 746
  • [10] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074