The Lp-Busemann-Petty centroid inequality

被引:183
作者
Campi, S [1 ]
Gronchi, P
机构
[1] Univ Modena & Reggio E, Dipartimento Matemat Pura & Applicata G Vitali, I-41100 Modena, Italy
[2] CNR, Ist Anal Globale & Applicaz, I-50139 Florence, Italy
关键词
D O I
10.1006/aima.2001.2036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ratio between the volume of the p-centroid body of a convex body K in R-n and the volume of K attains its minimum value if and only if K is an origin symmetric ellipsoid. This result, the L-p-Busemann Petty centroid inequality, was recently proved by Lutwak, Yang, and Zhang, In this paper we show that all the intrinsic volumes of the p-centroid body of K are convex functions of a time-like parameter when K is moved by shifting all the chords parallel to a fixed direction. The L-p-Busemann-Petty centroid inequality is a consequence of this general fact. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:128 / 141
页数:14
相关论文
共 22 条
  • [1] Blaschke W., 1917, Ber. Verh. Sachs. Akad. Wiss., Math. Phys. Kl., V69, P412
  • [2] Blaschke W., 1918, Ber. verh. sachs. Akad. d. Wiss, V70, P72
  • [3] Campi S., 1999, REND I MAT U TRIESTE, V31, P79
  • [4] Fary I., 1950, MATH ANN, V122, P205
  • [5] Firey WJ, 1962, Mathematica Scandinavica, V10, P17
  • [6] Gardner RJ., 1995, GEOMETRIC TOMOGRAPHY
  • [7] JOHN F, 1937, DUKE MATH J, V3, P355, DOI DOI 10.1215/S0012-7094-37-00327-2.MR1545993
  • [8] Lindenstrauss J., 1993, HDB CONVEX GEOMETRY, P1149
  • [9] LUTWAK E, 1993, J DIFFER GEOM, V38, P131
  • [10] Lutwak E, 2000, DUKE MATH J, V104, P375