Spectral radius and Hamiltonian properties of graphs, II

被引:13
作者
Ge, Jun [1 ]
Ning, Bo [2 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Hamiltonicity; minimum degree; long cycle; balanced bipartite graph; CIRCUITS; ANALOGS; PATHS;
D O I
10.1080/03081087.2019.1580668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first present spectral conditions for the existence of Cn-1 in graphs (2-connected graphs) of order n, which are motivated by a conjecture of Erdos. We also prove spectral conditions for the existence of Hamilton cycles in balanced bipartite graphs. This result presents a spectral analog of Moon-Moser's theorem on Hamilton cycles in balanced bipartite graphs, and extends a previous theorem due to Li and the second author for n sufficiently large. We conclude this paper with two problems on tight spectral conditions for the existence of long cycles of given lengths.
引用
收藏
页码:2298 / 2315
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1961, Ann. Mat. Pura Appl.
[2]  
[Anonymous], 1970, THESIS
[3]  
Bhattacharya A, 2008, ELECTRON J COMB, V15
[4]  
Bondy J.A., 1971, J COMBINATORIAL THEO, V11, P80
[5]  
Bondy J.A., 1971, Discrete Math, V1, P121, DOI DOI 10.1016/0012-365X(71)90019-7
[6]  
Bondy J.A., 2008, Springer Graduate Texts in Mathematics
[7]   VARIATIONS ON HAMILTONIAN THEME [J].
BONDY, JA .
CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01) :57-&
[8]  
Bondy JA., 1970, P 1 LOUIS C COMB GRA, P47
[9]   Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian [J].
Butler, Steve ;
Chung, Fan .
ANNALS OF COMBINATORICS, 2010, 13 (04) :403-412
[10]   The number of edges, spectral radius and Hamilton-connectedness of graphs [J].
Chen, Ming-Zhu ;
Zhang, Xiao-Dong .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (04) :1104-1127