Elastic anisotropies and thermal conductivities of WB2 diborides in different crystal structures: A first-principles calculation

被引:61
作者
Li, Ping [1 ]
Ma, Lishi [1 ]
Peng, Mingjun [1 ]
Shu, Baipo [1 ]
Duan, Yonghua [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
First-principles calculations; WB2; Elastic anisotropy; Thermal conductivity; TRANSITION-METAL BORIDES; 1ST PRINCIPLES; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; PHASE-STABILITY; THERMODYNAMIC PROPERTIES; TUNGSTEN BORIDES; SUPERHARD; HARDNESS; SEARCH;
D O I
10.1016/j.jallcom.2018.03.109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we performed the first-principles calculations to investigate the phase stabilities, elastic anisotropies and thermal conductivities of WB2 in hexagonal, trigonal and orthorhombic crystal structures. WB2 diborides are thermodynamically stable and the order of phase stability is hP6 > oP6 > hR9 > hR18 > hP12 > hP3. The polycrystalline elastic moduli, Poisson's ratios, hardness and Debye temperatures are calculated based on the single-crystal elastic constants. According to the mechanically stable criterions, all WB2 diborides are mechanically stable. The order of elastic anisotropy follows as hP3-WB2 > hR9-WB2 > oP6-WB2 > hP6-WB2 > hR18-WB2 > hP12-WB2. The obtained directional sound velocities also show the anisotropy of WB2. Besides, the minimum thermal conductivities of WB2 are calculated by Clarke's and Cahill's models, and the order is hP3-WB2 < hP12-WB2 < hR9-WB2 < hR18-WB2 < hP6-WB2 < oP3-WB2. Moreover, the directional minimum thermal conductivities of WB2 are anisotropic. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 62 条
  • [51] Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate, (Bi4Ti3O12):: A natural nanostructured superlattice
    Shen, Yang
    Clarke, David R.
    Fuierer, Paul A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (10)
  • [52] Synthesis of superhard materials
    Solozhenko, Vladimir L.
    Gregoryanz, Eugene
    [J]. MATERIALS TODAY, 2005, 8 (11) : 44 - 51
  • [53] Computational alchemy: The search for new superhard materials
    Teter, DM
    [J]. MRS BULLETIN, 1998, 23 (01) : 22 - 27
  • [54] Microscopic theory of hardness and design of novel superhard crystals
    Tian, Yongjun
    Xu, Bo
    Zhao, Zhisheng
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 33 : 93 - 106
  • [55] Voigt W., 1928, Textbook of Crystal Physics
  • [56] Mechanical and electronic properties of 5d transition metal diborides MB2 (M=Re, W, Os, Ru)
    Wang, Jie
    Wang, Yun-Jiang
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [57] First principles calculation on electronic structure, chemical bonding, elastic and optical properties of novel tungsten triboride
    Wang Yi-fu
    Xia Qing-lin
    Yu Yan
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (02) : 500 - 505
  • [58] TUNGSTEN DIBORIDE - PREPARATION AND STRUCTURE
    WOODS, HP
    WAWNER, FE
    FOX, BG
    [J]. SCIENCE, 1966, 151 (3706) : 75 - &
  • [59] Wu ZJ, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.054115
  • [60] Exploring the high-pressure behavior of superhard tungsten tetraboride
    Xie, Miao
    Mohammadi, Reza
    Mao, Zhu
    Armentrout, Matt M.
    Kavner, Abby
    Kaner, Richard B.
    Tolbert, Sarah H.
    [J]. PHYSICAL REVIEW B, 2012, 85 (06)