Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

被引:2
|
作者
Balciunas, Evaldas [1 ,2 ]
Lukosevicius, Laurynas [1 ]
Mackeviciute, Dovile [1 ]
Rekstyte, Sima [1 ]
Rutkunas, Vygandas [3 ]
Paipulas, Domas [1 ]
Stankeviciute, Karolina [1 ]
Baltriukiene, Daiva [2 ]
Bukelskiene, Virginija [2 ]
Piskarskas, Algis P. [1 ]
Malinauskas, Mangirdas [1 ]
机构
[1] Vilnius State Univ, Fac Phys, Dept Quantum Elect, Laser Res Ctr, Sauletekio Ave 10, LT-10223 Vilnius, Lithuania
[2] Vilnius State Univ, Inst Biochem, Dept Biolog Models, LT-08662 Vilnius, Lithuania
[3] Vilnius State Univ, Inst Odontol, Fac Med, LT-08217 Vilnius, Lithuania
来源
FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XIV | 2014年 / 8972卷
关键词
direct laser writing; multiphoton polymerization; laser ablation; thermal extrusion; fused deposition modeling; 3D printing; composite structures; scaffolds; 2-PHOTON POLYMERIZATION; MICROSTRUCTURES; LITHOGRAPHY; RANGE;
D O I
10.1117/12.2040584
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Bioceramic Scaffolds Manufacturing by Laser 3D Printing
    Liu, Fwu-Hsing
    Lin, Wen-Hsueng
    Lee, Ruey-Tsung
    Wang, Hsiu-Ping
    Lee, Liang-Wang
    MATERIALS SCIENCE, MECHANICAL ENGINEERING AND APPLIED RESEARCH, 2014, 628 : 64 - 67
  • [2] Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds
    Zhang, Bin
    Cristescu, Rodica
    Chrisey, Douglas B.
    Narayan, Roger J.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (01) : 28 - 42
  • [3] Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing
    Dávila, J.L. (josedavila@fem.unicamp.br), 1600, John Wiley and Sons Inc (133):
  • [4] Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing
    Davila, J. L.
    Freitas, M. S.
    Inforcatti Neto, P.
    Silveira, Z. C.
    Silva, J. V. L.
    d'Avila, M. A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (15)
  • [5] HYDROGELS FOR 3D EXTRUSION PRINTING OF GRADIENT SCAFFOLDS
    Geevarghese, Rency
    Zur-Pinska, Joanna
    Wlodarczyk-Biegun, Malgorzata
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1145 - 1145
  • [6] Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing
    Malinauskas, Mangirdas
    Lukosevicius, Laurynas
    Mackeviciute, Dovile
    Balciunas, Evaldas
    Rekstyte, Sima
    Paipulas, Domas
    LASER SOURCES AND APPLICATIONS II, 2014, 9135
  • [7] Direct Laser Fabrication of Composite Material 3D Microstructured Scaffolds
    Rekstyte, Sima
    Kaziulionyte, Egle
    Balciunas, Evaldas
    Kaskelyte, Dalia
    Malinauskas, Mangirdas
    JOURNAL OF LASER MICRO NANOENGINEERING, 2014, 9 (01): : 25 - 30
  • [8] Direct laser fabrication of composite material 3D microstructured scaffolds
    Rekstyte, S.
    Balciunas, E.
    Baltriukiene, D.
    Rutkuenas, V.
    Bukelskiene, V.
    Gadonas, R.
    Malinauskas, M.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [9] Laser printing of cells into 3D scaffolds
    Ovsianikov, A.
    Gruene, M.
    Pflaum, M.
    Koch, L.
    Maiorana, F.
    Wilhelmi, M.
    Haverich, A.
    Chichkov, B.
    BIOFABRICATION, 2010, 2 (01)
  • [10] Fabrication of Graded Structures by Extrusion 3D Printing
    Giannatsis, J.
    Vassilakos, A.
    Canellidis, V.
    Dedoussis, V.
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 175 - 179