Structure and Properties of Four-Kink Multisolitons of the Sine-Gordon Equation

被引:15
作者
Gumerov, A. M. [1 ]
Ekomasov, E. G. [1 ]
Zakir'yanov, F. K. [1 ]
Kudryavtsev, R. V. [1 ]
机构
[1] Bashkir State Univ, Ufa 450076, Bashkortostan, Russia
关键词
sine-Gordon equation; four-kink multisolitons; structure and properties of solitons; numerical-analytical study; IMPURITY INTERACTIONS; DOMAIN-WALL; SOLITON; DYNAMICS; KINKS; MODEL; PERTURBATIONS; SCATTERING; ANISOTROPY; FIELD;
D O I
10.1134/S0965542514030075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of nonlinear waves of the sine-Gordon equation with a spatially modulated periodic potential are studied using analytical and numerical methods. The structure and properties of four-kink multisolitons excited on two identical attracting impurities are determined. For small-amplitude oscillations, an analytical spectrum of the oscillations is obtained, which is in qualitatively agreement with the numerical results.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
[11]   On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space [J].
Alejo, Miguel A. ;
Munoz, Claudio ;
Palacios, Jose M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) :581-636
[12]   Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities [J].
Ekomasov, E. G. ;
Kudryavtsev, R. V. ;
Samsonov, K. Yu. ;
Nazarov, V. N. ;
Kabanov, D. K. .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (06) :693-709
[13]   Kink-antikink stripe interactions in the two-dimensional sine-Gordon equation [J].
Carretero-Gonzalez, R. ;
Cisneros-Ake, L. A. ;
Decker, R. ;
Koutsokostas, G. N. ;
Frantzeskakis, D. J. ;
Kevrekidis, P. G. ;
Ratliff, D. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
[14]   Proportional feedback and optimal control of perturbed sine-Gordon kink solitons [J].
Ohemeng, Mordecai Opoku ;
Ackora-Prah, Joseph ;
Barnes, Benedict ;
Takyi, Ishmael .
CHAOS SOLITONS & FRACTALS, 2025, 199
[15]   Mathematical structure of topological solitons due to the Sine-Gordon Equation [J].
Johnson, Stephen ;
Chen, Feiyu ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6372-6378
[16]   Control for the sine-Gordon equation [J].
Petcu, M ;
Temam, R .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (04) :553-573
[17]   Stability of the solitary manifold of the perturbed sine-Gordon equation [J].
Mashkin, Timur .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
[18]   Unstable kink and anti-kink profile for the sine-Gordon equation on a Y-junction graph [J].
Angulo Pava, Jaime ;
Plaza, Ramon G. .
MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (03) :2885-2915
[19]   Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries [J].
Pava, Jaime Angulo ;
Plaza, Ramon G. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 427 (427)
[20]   Asymptotics of Kink--Kink Interaction for Sine-Gordon Type Equations [J].
D. A. Kulagin ;
G. A. Omel'yanov .
Mathematical Notes, 2004, 75 :563-567