This paper presents a new evolutionary cooperative learning scheme, able to solve function approximation and classification problems with improved accuracy and generalization capabilities. The proposed method optimizes the construction of radial basis function (RBF) networks, based on a cooperative particle swarm optimization (CPSO) framework. It allows for using variable-width basis functions, which increase the flexibility of the produced models, while performing full network optimization by concurrently determining the rest of the RBF parameters, namely center locations, synaptic weights and network size. To avoid the excessive number of design variables, which hinders the optimization task, a compact representation scheme is introduced, using two distinct swarms. The first swarm applies the non-symmetric fuzzy means algorithm to calculate the network structure and RBF kernel center coordinates, while the second encodes the basis function widths by introducing a modified neighbor coverage heuristic. The two swarms work together in a cooperative way, by exchanging information towards discovering improved RBF network configurations, whereas a suitably tailored reset operation is incorporated to help avoid stagnation. The superiority of the proposed scheme is illustrated through implementation in a wide range of benchmark problems, and comparison with alternative approaches. (C) 2016 Elsevier B.V. All rights reserved.