Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects

被引:26
作者
Maffucci, Antonio [1 ]
Miano, Giovanni [2 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn, I-03043 Cassino, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
关键词
Conducting channels; graphene nanoribbons (GNRs); nanointerconnects; transmission lines (TLs); CARBON NANOTUBES; MODEL; TRANSPORT;
D O I
10.1109/TNANO.2013.2274901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanowire-based circuits are candidates for future high-speed electronics. Signal propagation in nanowires can be studied by combining the semiclassical Boltzmann transport theory to the classical transmission line theory. In this paper, we apply this approach to model the signal propagation in graphene nanoribbon (GNR) interconnects. We express the kinetic inductance and the quantum capacitance in terms of the number of effective conducting channels. We study in detail the behavior of the number of effective conducting channels for both the armchair and zig-zag GNRs as their widths vary. This number is computed rigorously, taking into account the actual distribution of the energy spectrum and of the velocity of the conduction electrons. We found that the expressions for the number of conducting channels proposed in the literature give a significant overestimation of its values.
引用
收藏
页码:817 / 823
页数:7
相关论文
共 19 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition
    Behnam, Ashkan
    Lyons, Austin S.
    Bae, Myung-Ho
    Chow, Edmond K.
    Islam, Sharnali
    Neumann, Christopher M.
    Pop, Eric
    [J]. NANO LETTERS, 2012, 12 (09) : 4424 - 4430
  • [3] An RF circuit model for carbon nanotubes
    Burke, PJ
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (01) : 55 - 58
  • [4] Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes
    Burke, PJ
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (03) : 129 - 144
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics
    Chen, Xiangyu
    Akinwande, Deji
    Lee, Kyeong-Jae
    Close, Gael F.
    Yasuda, Shinichi
    Paul, Bipul C.
    Fujita, Shinobu
    Kong, Jing
    Wong, H. -S. Philip
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) : 3137 - 3143
  • [7] Electrical Modeling of Carbon Nanotube Vias
    Chiariello, Andrea G.
    Maffucci, Antonio
    Miano, Giovanni
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2012, 54 (01) : 158 - 166
  • [8] Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons
    Christensen, Johan
    Manjavacas, Alejandro
    Thongrattanasiri, Sukosin
    Koppens, Frank H. L.
    Javier Garcia de Abajo, F.
    [J]. ACS NANO, 2012, 6 (01) : 431 - 440
  • [9] Transmission-Line Model for Multiwall Carbon Nanotubes With Intershell Tunneling
    Forestiere, Carlo
    Maffucci, Antonio
    Maksimenko, Sergey A.
    Miano, Giovanni
    Slepyan, Gregory Ya
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (03) : 554 - 564
  • [10] Katsnelson M., 2020, The Physics of Graphene, V2nd