Poly-stable energy harvesting based on synergetic multistable vibration

被引:56
作者
Deng, Huaxia [1 ]
Du, Yu [1 ]
Wang, Zhemin [1 ]
Ye, Jingchang [1 ]
Zhang, Jin [1 ]
Ma, Mengchao [1 ]
Zhong, Xiang [1 ]
机构
[1] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
OCEAN WAVES; NANOGENERATOR;
D O I
10.1038/s42005-019-0117-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Distributed energy sources, for example the ambient broadband vibrations, are of great importance for the development of the Internet of Things. However, for multistable vibrational energy harvesters, increasing the number of stable equilibrium states to broaden working frequency bands is very difficult. Here we present a poly-stable vibrational energy harvesting approach capable of achieving an exponentially growing maximum number of stable equilibrium states. Unlike the traditional multistable harvesters relying on an external static magnetic field, the nonlinear dynamical behaviours achieved by the proposed approach are synergetic poly-stable motions without the need of external magnets. Comparison experiments in contrast with a linear harvester demonstrate the working bandwidth widened by a factor of 41.0, the power density increased to 760% and the electricity generation raised to 178%. This demonstration of new multistable energy harvester expands the approach to achieving multistable motion and provides a new design philosophy for nonlinear vibrational energy harvesters.
引用
收藏
页数:10
相关论文
共 47 条
[1]   A bistable buckled beam based approach for vibrational energy harvesting [J].
Ando, B. ;
Baglio, S. ;
Bulsara, A. R. ;
Marletta, V. .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 211 :153-161
[2]   A piezoelectric bistable plate for nonlinear broadband energy harvesting [J].
Arrieta, A. F. ;
Hagedorn, P. ;
Erturk, A. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2010, 97 (10)
[3]   A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance [J].
Bai, Xiaoling ;
Wen, Yumei ;
Yang, Jin ;
Li, Ping ;
Qiu, Jing ;
Zhu, Ying .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[4]   Influence of potential well depth on nonlinear tristable energy harvesting [J].
Cao, Junyi ;
Zhou, Shengxi ;
Wang, Wei ;
Lin, Jing .
APPLIED PHYSICS LETTERS, 2015, 106 (17)
[5]   Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator [J].
Chen, Jun ;
Wang, Zhong Lin .
JOULE, 2017, 1 (03) :480-521
[6]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.138, 10.1038/nenergy.2016.138]
[7]   Piezoelectric buckled beams for random vibration energy harvesting [J].
Cottone, F. ;
Gammaitoni, L. ;
Vocca, H. ;
Ferrari, M. ;
Ferrari, V. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (03)
[8]   Nonlinear Energy Harvesting [J].
Cottone, F. ;
Vocca, H. ;
Gammaitoni, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[9]   Marine energy: In deep water [J].
De Ranieri, Elisa .
NATURE ENERGY, 2016, 1
[10]   A multimodal and multidirectional vibrational energy harvester using a double-branched beam [J].
Deng, Huaxia ;
Du, Yu ;
Wang, Zhemin ;
Zhang, Jin ;
Ma, Mengchao ;
Zhong, Xiang .
APPLIED PHYSICS LETTERS, 2018, 112 (21)