CLUSTERING WITH GRANULAR INFORMATION PROCESSING

被引:0
作者
Kuzelewska, Urszula [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45a, PL-15521 Bialystok, Poland
来源
ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1 | 2011年
关键词
Knowledge discovery; Data mining; Information granulation; Granular computing; Clustering; Hyperboxes;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is a part of data mining domain. Its task is to detect groups of similar objects on the basis of established similarity criterion. Granular computing (GrC) includes methods from various areas with the aim to support human with better understanding analyzed problem and generated results. Granular computing techniques create and/or process data portions named as granules identified with regard to similar description, functionality or behavior. Interesting characteristic of granular computation is offer of multi-perspective view of data depending on required resolution level. Data granules identified on different levels of resolution form a hierarchical structure expressing relations between objects of data. A method proposed in this article performs creation data granules by clustering data in form of hyperboxes. The results are compared with clustering of point-type data with regard to complexity, quality and interpretability.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 12 条
  • [1] [Anonymous], 2002, P SETN C
  • [2] Bargiela A, 2001, JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, P1696, DOI 10.1109/NAFIPS.2001.943807
  • [3] Bargiela A., 2002, Granular computing: an introduction
  • [4] Granular Analysis of Traffic Data for Turning Movements Estimation
    Bargiela, Andrzej
    Kosonen, Iisakki
    Pursula, Matti
    Peytchev, Evtim
    [J]. INTERNATIONAL JOURNAL OF ENTERPRISE INFORMATION SYSTEMS, 2006, 2 (02) : 13 - 27
  • [5] On clustering validation techniques
    Halkidi, M
    Batistakis, Y
    Vazirgiannis, M
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2001, 17 (2-3) : 107 - 145
  • [6] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [7] Kaufman L., 1990, FINDING GROUPS DATA, DOI DOI 10.1002/9780470316801
  • [8] Kuzelewska U, 2008, LECT NOTES COMPUT SC, V5390, P96, DOI 10.1007/978-3-540-89876-4_6
  • [9] Pawlak Z., 1991, Theoretical Aspects of Reasoning About Data, Rough sets, DOI [10.1007/978-94-011-3534-4, DOI 10.1007/978-94-011-3534-4]
  • [10] Evaluation of clusters quality in artificial immune clustering system - SArIS
    Wierzchon, Slawomir T.
    Kuzelewska, Urszula
    [J]. BIOMETRICS, COMPUTER SECURITY SYSTEMS AND ARTIFICIAL INTELLIGENCE APPLICATIONS, 2006, : 323 - 331