Efficient n-Type Surface Doping in Diamond

被引:1
作者
Liu, Yaning [1 ]
Fu, Shiyang [1 ]
Cheng, Shaoheng [1 ,2 ]
Gao, Nan [1 ,2 ]
Li, Hongdong [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] Jilin Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SINGLE-CRYSTAL; CONDUCTIVITY; HYDROGEN;
D O I
10.1021/acs.jpcc.2c06884
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventional doping in diamond is challenging for its application in electronic devices, which could be overcome by an alternative method of surface-transfer doping. In this study, efficient surface n-type conductivity is obtained on the N-terminated diamond surface doped with decamethylcobaltocene (DMC) and cobaltocene (CoCp2) molecules having low ionization energy values by first-principles calculation. By the surface-transfer doping mechanism, electrons are transferred from the dopants to diamond, and then electron accumulation occurs on the diamond surface. For DMC-and CoCp2-doped diamond surfaces, the areal electron density values are 4.822 x 1013 and 4.519 x 1013 cm-2, and the carrier mobility values are 357 and 108 cm2 V-1 s-1 at 298 K, respectively. Moreover, after DMC and CoCp2 molecular adsorption, the optical absorption coefficient increases in the visible region. This study will promote investigations for two-dimensional electron gas on the diamond surface.
引用
收藏
页码:642 / 648
页数:7
相关论文
共 38 条
  • [1] DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS
    BARDEEN, J
    SHOCKLEY, W
    [J]. PHYSICAL REVIEW, 1950, 80 (01): : 72 - 80
  • [2] Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices
    Chan, Calvin K.
    Zhao, Wei
    Barlow, Stephen
    Marder, Seth
    Kahn, Antoine
    [J]. ORGANIC ELECTRONICS, 2008, 9 (05) : 575 - 581
  • [3] Surface transfer doping of semiconductors
    Chen, Wei
    Qi, Dongchen
    Gao, Xingyu
    Wee, Andrew Thye Shen
    [J]. PROGRESS IN SURFACE SCIENCE, 2009, 84 (9-10) : 279 - 321
  • [4] Nitrogen-Terminated Diamond (111) Surface for Room-Temperature Quantum Sensing and Simulation
    Chou, Jyh-Pin
    Retzker, Alex
    Gali, Adam
    [J]. NANO LETTERS, 2017, 17 (04) : 2294 - 2298
  • [5] Thermally Stable, High Performance Transfer Doping of Diamond using Transition Metal Oxides
    Crawford, Kevin G.
    Qi, Dongchen
    McGlynn, Jessica
    Ivanov, Tony G.
    Shah, Pankaj B.
    Weil, James
    Tallaire, Alexandre
    Ganin, Alexey Y.
    Moran, David A. J.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface
    Cui, JB
    Ristein, J
    Ley, L
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (02) : 429 - 432
  • [7] Progress Toward Diamond Power Field-Effect Transistors
    Geis, Michael W.
    Wade, Travis C.
    Wuorio, Charles H.
    Fedynyshyn, Theodore H.
    Duncan, Bradley
    Plaut, Maxwell E.
    Varghese, Joseph O.
    Warnock, Shireen M.
    Vitale, Steven A.
    Hollis, Mark A.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (22):
  • [8] THERMAL-EXPANSION COEFFICIENT OF SYNTHETIC DIAMOND SINGLE-CRYSTAL AT LOW-TEMPERATURES
    HARUNA, K
    MAETA, H
    OHASHI, K
    KOIKE, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (08): : 2527 - 2529
  • [9] Van der Waals density functionals applied to solids
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    [J]. PHYSICAL REVIEW B, 2011, 83 (19):
  • [10] Influence of (N,H)-terminated surfaces on stability, hyperfine structure, and zero-field splitting of NV centers in diamond
    Koerner, Wolfgang
    Ghassemizadeh, Reyhaneh
    Urban, Daniel F.
    Elsaesser, Christian
    [J]. PHYSICAL REVIEW B, 2022, 105 (08)