Electrochemically Grown ZnO Nanorod Arrays Decorated with CdS Quantum Dots by Using a Spin-Coating Assisted Successive-Ionic-Layer-Adsorption and Reaction Method for Solar Cell Applications

被引:18
作者
Campo, Lucia [1 ,2 ]
Pereyra, Carlos J. [1 ,2 ]
Amy, Lucia [1 ,2 ]
Elhordoy, Fernando [1 ,2 ]
Marotti, Ricardo E. [1 ,2 ]
Martin, Francisco [3 ]
Ramos-Barrado, Jose R. [3 ]
Dalchiele, Enrique A. [1 ,2 ]
机构
[1] Inst Fis, Montevideo 11000, Uruguay
[2] Fac Ingn, CINQUIFIMA, Montevideo 11000, Uruguay
[3] Univ Malaga, Dept Fis Aplicada & Ingn Quim, Lab Mat & Superficie, Unidad Asociada CSIC, E-29071 Malaga, Spain
关键词
NANOWIRE ARRAYS; OPTICAL-PROPERTIES; THIN-FILMS; NANOCABLE ARRAYS; SEMICONDUCTOR; EFFICIENCY; SHELL; DEPOSITION; ZNO/CDTE; CUINSE2;
D O I
10.1149/2.016309jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CdS quantum dots (QDs) decorated ZnO nanorod (NR) arrays were fabricated by a two-step method. The first step consisted in electrochemical growth of single-crystalline ZnO NR arrays, followed by the novel spin-coating assisted SILAR method for decorating the ZnO NRs with CdS QDs. Structural, morphological and optical characterization of CdS QDs/ZnO NR arrays were done. ZnO NRs had a single crystal wurtzite structure growing along the c-axis. The decorated CdS QDs had a quasi-spherical shape with a mean diameter of about 5 nm. The increase of CdS content produces an increase in the visible part of the absorption spectrum. Bandgap energy values for ZnO between 3.26-3.29 eV were obtained. For CdS the measured absorption edge values are between 2.35-2.65 eV (decreasing with the number of coating cycles). Numerical simulations based on effective medium approximation were done to verify these features. The Urbach tail parameter in CdS absorption edge is between 44-52 meV. The photovoltaic performance of ZnO and CdS QDs/ZnO NRs have been evaluated in a photoelectrochemical solar cell configuration with a polysulfide electrolyte under white illumination. The decoration of ZnO NRs with CdS QDs leads to a cell performance of J(SC) = 2.67 mA/cm(2), V-OC = 0.74 V, FF = 0.30 and eta = 1.48%. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:Q151 / Q158
页数:8
相关论文
共 76 条
[41]   CdS/PbS co-sensitized ZnO nanorods and its photovoltaic properties [J].
Liu, Chengcheng ;
Liu, Zhifeng ;
Li, Yabin ;
Ya, Jing ;
Lei, E. ;
An, Li .
APPLIED SURFACE SCIENCE, 2011, 257 (16) :7041-7046
[42]   Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures [J].
Lo, Shun S. ;
Mirkovic, Tihana ;
Chuang, Chi-Hung ;
Burda, Clemens ;
Scholes, Gregory D. .
ADVANCED MATERIALS, 2011, 23 (02) :180-197
[43]   Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells [J].
Majidi, Hasti ;
Baxter, Jason B. .
ELECTROCHIMICA ACTA, 2011, 56 (06) :2703-2711
[44]   Exciton localization and the Stokes' shift in InGaN epilayers [J].
Martin, RW ;
Middleton, PG ;
O'Donnell, KP ;
Van der Stricht, W .
APPLIED PHYSICS LETTERS, 1999, 74 (02) :263-265
[45]   Complex refractive index of a slab from reflectance and transmittance: analytical solution [J].
Nichelatti, E .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2002, 4 (04) :400-403
[46]   OPTICAL-PROPERTIES OF WURTZITE CDS [J].
NINOMIYA, S ;
ADACHI, S .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (02) :1183-1190
[47]   Multiple exciton generation in semiconductor quantum dots [J].
Nozik, Arthur J. .
CHEMICAL PHYSICS LETTERS, 2008, 457 (1-3) :3-11
[48]   A comprehensive review of ZnO materials and devices -: art. no. 041301 [J].
Ozgür, U ;
Alivov, YI ;
Liu, C ;
Teke, A ;
Reshchikov, MA ;
Dogan, S ;
Avrutin, V ;
Cho, SJ ;
Morkoç, H .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04) :1-103
[49]  
Pankove JI., 1975, Optical processes in semiconductors
[50]  
Pauporte T., 2009, LECT NOTES NANOSCALE, V5