A Penalized Likelihood Method for Classification With Matrix-Valued Predictors

被引:11
|
作者
Molstad, Aaron J. [1 ]
Rothman, Adam J. [2 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Biostat Program, Seattle, WA 98109 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Alternating minimization algorithm; Classification; Penalized likelihood; DISCRIMINANT-ANALYSIS; VARIABLE SELECTION; REGRESSION; ALGORITHM; MODEL;
D O I
10.1080/10618600.2018.1476249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a penalized likelihood method to fit the linear discriminant analysis model when the predictor is matrix valued. We simultaneously estimate the means and the precision matrix, which we assume has a Kronecker product decomposition. Our penalties encourage pairs of response category mean matrix estimators to have equal entries and also encourage zeros in the precision matrix estimator. To compute our estimators, we use a blockwise coordinate descent algorithm. To update the optimization variables corresponding to response category mean matrices, we use an alternating minimization algorithm that takes advantage of the Kronecker structure of the precision matrix. We show that our method can outperform relevant competitors in classification, even when our modeling assumptions are violated. We analyze three real datasets to demonstrate our method's applicability. Supplementary materials, including an R package implementing our method, are available online.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [1] Least squares and maximum likelihood estimation of sufficient reductions in regressions with matrix-valued predictors
    Ruth M. Pfeiffer
    Daniel B. Kapla
    Efstathia Bura
    International Journal of Data Science and Analytics, 2021, 11 : 11 - 26
  • [2] Least squares and maximum likelihood estimation of sufficient reductions in regressions with matrix-valued predictors
    Pfeiffer, Ruth M.
    Kapla, Daniel B.
    Bura, Efstathia
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2021, 11 (01) : 11 - 26
  • [3] Sufficient dimension folding in regression via distance covariance for matrix-valued predictors
    Sheng, Wenhui
    Yuan, Qingcong
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (01) : 71 - 82
  • [4] Matrix-valued quantum lattice Boltzmann method
    Mendl, Christian B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (10):
  • [5] A DIFFUSION GENERATED METHOD FOR ORTHOGONAL MATRIX-VALUED FIELDS
    Osting, Braxton
    Wang, Dong
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 515 - 550
  • [6] A Penalized Likelihood Method for Structural Equation Modeling
    Huang, Po-Hsien
    Chen, Hung
    Weng, Li-Jen
    PSYCHOMETRIKA, 2017, 82 (02) : 329 - 354
  • [7] Multiclass Penalized Likelihood Pattern Classification Algorithm
    Talaat, Amira Samy
    Atiya, Amir F.
    Mokhtar, Sahar A.
    Al-Ani, Ahmed
    Fayek, Magda
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 141 - 148
  • [8] Least Squares and Maximum Likelihood Estimation of Sufficient Reductions in Regressions with Matrix Valued Predictors
    Pfeiffer, Ruth
    Wang, Wei
    Bura, Efstathia
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 135 - 144
  • [9] A penalized likelihood based pattern classification algorithm
    Atiya, Amir F.
    Al-Ani, Ahmed
    PATTERN RECOGNITION, 2009, 42 (11) : 2684 - 2694
  • [10] A penalized blind likelihood Kriging method for surrogate modeling
    Zhang, Yi
    Yao, Wen
    Chen, Xiaoqian
    Ye, Siyu
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 457 - 474