Lyapunov exponent and criticality in the Hamiltonian mean field model

被引:4
作者
Miranda Filho, L. H. [1 ]
Amato, M. A. [2 ,3 ]
Rocha Filho, T. M. [2 ,3 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel de Medeiros S-N, BR-52171900 Recife, PE, Brazil
[2] Univ Brasilia, Inst Fis, CP 04455, BR-70919970 Brasilia, DF, Brazil
[3] Univ Brasilia, Int Ctr Condensed Matter Phys, CP 04455, BR-70919970 Brasilia, DF, Brazil
关键词
classical phase transitions; critical exponents and amplitudes; numerical simulations; molecular dynamics; STATISTICAL-MECHANICS; RELAXATION; DYNAMICS; INSTABILITY; SYSTEMS; CHAOS;
D O I
10.1088/1742-5468/aaa784
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the dependence of the largest Lyapunov exponent (LLE) of an N-particle self-gravitating ring model at equilibrium with respect to the number of particles and its dependence on energy. This model has a continuous phase-transition from a ferromagnetic to homogeneous phase, and we numerically confirm with large scale simulations the existence of a critical exponent associated to the LLE, although at variance with the theoretical estimate. The existence of strong chaos in the magnetized state evidenced by a positive Lyapunov exponent is explained by the coupling of individual particle oscillations to the diffusive motion of the center of mass of the system and also results in a change of the scaling of the LLE with the number of particles. We also discuss thoroughly for the model the validity and limits of the approximations made by a geometrical model for their analytic estimate.
引用
收藏
页数:17
相关论文
共 47 条
[1]  
[Anonymous], PHYS REP
[2]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[3]  
[Anonymous], 2014, PHYS LONG RANGE INTE, DOI DOI 10.1093/ACPROF:OSO/9780199581931.001.0001
[4]  
[Anonymous], UNPUB
[5]  
Anteneodo C, 2002, PHYS REV E, V65, DOI [10.1103/PhyaRevE.65.016210, 10.1103/PhysRevE.65.016210]
[6]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[7]   Statistical mechanics and Vlasov equation allow for a simplified Hamiltonian description of Single-Pass Free Electron Laser saturated dynamics [J].
Antoniazzi, A. ;
Elskens, Y. ;
Fanelli, D. ;
Ruffo, S. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (04) :603-611
[8]   Statistical theory of quasistationary states beyond the single water-bag case study [J].
Assllani, Mallbor ;
Fanelli, Duccio ;
Turchi, Alessio ;
Carletti, Timoteo ;
Leoncini, Xavier .
PHYSICAL REVIEW E, 2012, 85 (02)
[9]   Abundance of Regular Orbits and Nonequilibrium Phase Transitions in the Thermodynamic Limit for Long-Range Systems [J].
Bachelard, R. ;
Chandre, C. ;
Fanelli, D. ;
Leoncini, X. ;
Ruffo, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[10]   Incomplete equilibrium in long-range interacting systems [J].
Baldovin, Fulvio ;
Orlandini, Enzo .
PHYSICAL REVIEW LETTERS, 2006, 97 (10)