A Generalization of Implicit Ore-condition for Hamiltonicity ofk-connected Graphs

被引:1
作者
Cai, Jun-qing [1 ]
Wang, Lin [1 ]
机构
[1] Qufu Normal Univ, Sch Management, Rizhao 276826, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2020年 / 36卷 / 03期
基金
中国国家自然科学基金;
关键词
implicit degree; Hamiltonian cycle; cyclability; CYCLES;
D O I
10.1007/s10255-020-0956-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2005, Flandrin et al. proved that ifGis ak-connected graph of ordernandV(G) =X-1?X-2? MIDLINE HORIZONTAL ELLIPSIS UXfc such thatd(x) +d(y) >= n for each pair of nonadjacent verticesx, y is an element of X(i)and eachiwithi= 1, 2, MIDLINE HORIZONTAL ELLIPSIS,k, thenGis hamiltonian. In order to get more sufficient conditions for hamiltonicity of graphs, Zhu, Li and Deng proposed the definitions of two kinds of implicit degree of a vertexv, denoted byid(1)(v) andid(2)(v), respectively. In this paper, we are going to prove that ifGis ak-connected graph of ordernandV(G) =X-1?X-2? MIDLINE HORIZONTAL ELLIPSIS ?X(k)such thatid(2)(x) +id(2)(y) >= nfor each pair of nonadjacent verticesx, y is an element of X(i)and eachiwithi= 1, 2, MIDLINE HORIZONTAL ELLIPSIS,k, thenGis hamiltonian.
引用
收藏
页码:620 / 626
页数:7
相关论文
共 21 条
[1]  
Bondy J.A., 2007, Graph Theory
[2]  
Bondy J. A., 1971, Discrete Math., V1, P121, DOI DOI 10.1016/0012-365X(71)90019-7
[3]   An Implicit Degree Condition for Relative Length of Long Paths and Cycles in Graphs [J].
Cai, Jun-qing ;
Li, Hao .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02) :365-372
[4]   Longest cycles in 4-connected graphs [J].
Cai, Junqing ;
Li, Hao ;
Sun, Qiang .
DISCRETE MATHEMATICS, 2017, 340 (12) :2955-2966
[5]  
Cai JQ, 2017, ARS COMBINATORIA, V130, P143
[6]   Hamilton Cycles in Implicit 2-Heavy Graphs [J].
Cai, Junqing ;
Li, Hao .
GRAPHS AND COMBINATORICS, 2016, 32 (04) :1329-1337
[7]   AN IMPLICIT WEIGHTED DEGREE CONDITION FOR HEAVY CYCLES [J].
Cai, Junqing ;
Li, Hao ;
Ning, Wantao .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (04) :801-810
[8]   An implicit degree condition for long cycles in 2-connected graphs [J].
Chen, Bing ;
Zhang, Shenggui .
APPLIED MATHEMATICS LETTERS, 2006, 19 (11) :1148-1151
[9]  
Chvatal V., 1972, Discrete Math, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[10]   NEW SUFFICIENT CONDITIONS FOR CYCLES IN GRAPHS [J].
FAN, GH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :221-227