A Proteomics and Transcriptomics Approach to Identify Leukemic Stem Cell (LSC) Markers

被引:74
作者
Bonardi, Francesco [1 ]
Fusetti, Fabrizia [2 ,3 ]
Deelen, Patrick [1 ]
van Gosliga, Djoke [1 ]
Vellenga, Edo [1 ]
Schuringa, Jan Jacob [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Expt Hematol, NL-9700 RB Groningen, Netherlands
[2] Univ Groningen, Dept Biochem, NL-9747 AG Groningen, Netherlands
[3] Univ Groningen, Netherlands Prote Ctr, Groningen Biol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
关键词
ACUTE MYELOID-LEUKEMIA; SPECTROMETRY-BASED PROTEOMICS; HUMAN HEMATOPOIETIC STEM; RECEPTOR-ALPHA CHAIN; SELF-RENEWAL; EXPRESSION; FLT3; IDENTIFICATION; TARGET; PLASMA;
D O I
10.1074/mcp.M112.021931
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Interactions between hematopoietic stem cells and their niche are mediated by proteins within the plasma membrane (PM) and changes in these interactions might alter hematopoietic stem cell fate and ultimately result in acute myeloid leukemia (AML). Here, using nano-LC/MS/MS, we set out to analyze the PM profile of two leukemia patient samples. We identified 867 and 610 unique CD34(+) PM (-associated) proteins in these AML samples respectively, including previously described proteins such as CD47, CD44, CD135, CD96, and ITGA5, but also novel ones like CD82, CD97, CD99, PTH2R, ESAM, MET, and ITGA6. Further validation by flow cytometry and functional studies indicated that long-term self-renewing leukemic stem cells reside within the CD34(+)/ITGA6(+) fraction, at least in a subset of AML cases. Furthermore, we combined proteomics with transcriptomics approaches using a large panel of AML CD34(+) (n = 60) and normal bone marrow CD34(+) (n = 40) samples. Thus, we identified eight subgroups of AML patients based on their specific PM expression profile. GSEA analysis revealed that these eight subgroups are enriched for specific cellular processes. Molecular & Cellular Proteomics 12: 10.1074/mcp.M112.021931, 626-637, 2013.
引用
收藏
页码:626 / 637
页数:12
相关论文
共 61 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
[Anonymous], NAT MED
[4]  
[Anonymous], 1997, MACHINE LEARNING, MCGRAW-HILL SCIENCE/ENGINEERING/MATH
[5]  
BENDALL LJ, 1993, BLOOD, V82, P3125
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J].
Bonnet, D ;
Dick, JE .
NATURE MEDICINE, 1997, 3 (07) :730-737
[8]   Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis [J].
Bruce, Stephen J. ;
Jonsson, Par ;
Antti, Henrik ;
Cloarec, Olivier ;
Trygg, Johan ;
Marklund, Stefan L. ;
Moritz, Thomas .
ANALYTICAL BIOCHEMISTRY, 2008, 372 (02) :237-249
[9]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846
[10]   Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias [J].
Carow, CE ;
Levenstein, M ;
Kaufmann, SH ;
Chen, J ;
Amin, S ;
Rockwell, P ;
Witte, L ;
Borowitz, MJ ;
Civin, CI ;
Small, D .
BLOOD, 1996, 87 (03) :1089-1096