On the accuracy of finite difference schemes for beam problems in the elastic range

被引:4
作者
Davoudi, M. M. [1 ]
Oechsner, A. [2 ]
机构
[1] Univ Teknol Malaysia UTM, Fac Mech Engn, Utm Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia UTM, Fac Biosci & Med Engn, Utm Skudai 81310, Johor, Malaysia
关键词
Numerical Method; Approximate Solution; Elastic Bending; Error Estimate; Boundary Conditions; Fictitious Nodes;
D O I
10.1002/mawe.201300156
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The finite difference method is applied to derive approximate solutions for the bending line of Euler-Bernoulli beam problems. The investigations are restricted to simple static configurations, i.e. straight beams with constant symmetrical cross-sections and constant elastic material properties. Only finite difference schemes of second-order accuracy are considered and special emphasis is given to the implementation of the boundary conditions. Based on comparisons with the exact solutions, clear recommendations can be given on the required number of nodes to obtain a certain accuracy in the numerical approach.
引用
收藏
页码:506 / 514
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2013, Boundary Element Methods for Engineers and Scientists: An Introductory Course with Advanced Topics
[2]  
Banerjee PK., 1994, BOUNDARY ELEMENT MET
[3]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[4]  
Collatz L., 1966, NUMERICAL TREATMENT
[5]  
Deb Nath S. K, 2011, J ENG MECH-ASCE, V137, P258
[6]  
Forsythe GE., 1960, Finite-Difference Methods for Partial Differential Equations
[7]  
Gere J.M., 2004, Mechanics of Materials, V6th
[8]  
Hibbeler R.C., 2008, Mechanics of Materials, Vseventh
[9]  
Jun X, 2009, CHINESE J AERONAUT, V22, P262
[10]  
LeVeque RJ, 2007, OTHER TITL APPL MATH, V98, P1, DOI 10.1137/1.9780898717839