Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines

被引:459
作者
Varoquaux, Gael [1 ,2 ]
Raamana, Pradeep Reddy [3 ,4 ]
Engemann, Denis A. [2 ,5 ,6 ,7 ]
Hoyos-Idrobo, Andres [1 ,2 ]
Schwartz, Yannick [1 ,2 ]
Thirion, Bertrand [1 ,2 ]
机构
[1] INRIA Saclay Ile France, Parietal Project Team, Palaiseau, France
[2] CEA, Neurospin, Bat 145, F-91191 Gif Sur Yvette, France
[3] Baycrest Hlth Sci, Rotman Res Inst, Toronto, ON M6A 2E1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
[5] Univ Paris Sud, INSERM, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[6] Univ Paris Saclay, F-91191 Gif Sur Yvette, France
[7] INSERM, Brain & Spine Inst ICM, Neuropsychol & Neuroimaging Team, UMRS 975, Paris, France
关键词
Cross-validation; Decoding; FMRI; Model selection; Sparse; Bagging; MVPA; FMRI; CLASSIFICATION; STABILITY; PREDICTION; PATTERNS; MACHINE; STATES;
D O I
10.1016/j.neuroimage.2016.10.038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 61 条
  • [41] Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    Mourao-Miranda, J
    Bokde, ALW
    Born, C
    Hampel, H
    Stetter, M
    [J]. NEUROIMAGE, 2005, 28 (04) : 980 - 995
  • [42] Encoding and decoding in fMRI
    Naselaris, Thomas
    Kay, Kendrick N.
    Nishimoto, Shinji
    Gallant, Jack L.
    [J]. NEUROIMAGE, 2011, 56 (02) : 400 - 410
  • [43] Beyond mind-reading: multi-voxel pattern analysis of fMRI data
    Norman, Kenneth A.
    Polyn, Sean M.
    Detre, Greg J.
    Haxby, James V.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2006, 10 (09) : 424 - 430
  • [44] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [45] Penny WD, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P454, DOI 10.1016/B978-012372560-8/50035-8
  • [46] Machine learning classifiers and fMRI: A tutorial overview
    Pereira, Francisco
    Mitchell, Tom
    Botvinick, Matthew
    [J]. NEUROIMAGE, 2009, 45 (01) : S199 - S209
  • [47] Platt JC, 2000, ADV NEUR IN, P61
  • [48] Toward open sharing of task-based fMRI data: the OpenfMRI project
    Poldrack, Russell A.
    Barch, Deanna M.
    Mitchell, Jason P.
    Wager, Tor D.
    Wagner, Anthony D.
    Devlin, Joseph T.
    Cumba, Chad
    Koyejo, Oluwasanmi
    Milham, Michael P.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [49] Thickness network features for prognostic applications in dementia
    Raamana, Pradeep Reddy
    Weiner, Michael W.
    Wang, Lei
    Beg, Mirza Faisal
    [J]. NEUROBIOLOGY OF AGING, 2015, 36 : S91 - S102
  • [50] Model sparsity and brain pattern interpretation of classification models in neuroimaging
    Rasmussen, Peter M.
    Hansen, Lars K.
    Madsen, Kristoffer H.
    Churchill, Nathan W.
    Strother, Stephen C.
    [J]. PATTERN RECOGNITION, 2012, 45 (06) : 2085 - 2100