Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines

被引:494
作者
Varoquaux, Gael [1 ,2 ]
Raamana, Pradeep Reddy [3 ,4 ]
Engemann, Denis A. [2 ,5 ,6 ,7 ]
Hoyos-Idrobo, Andres [1 ,2 ]
Schwartz, Yannick [1 ,2 ]
Thirion, Bertrand [1 ,2 ]
机构
[1] INRIA Saclay Ile France, Parietal Project Team, Palaiseau, France
[2] CEA, Neurospin, Bat 145, F-91191 Gif Sur Yvette, France
[3] Baycrest Hlth Sci, Rotman Res Inst, Toronto, ON M6A 2E1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
[5] Univ Paris Sud, INSERM, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[6] Univ Paris Saclay, F-91191 Gif Sur Yvette, France
[7] INSERM, Brain & Spine Inst ICM, Neuropsychol & Neuroimaging Team, UMRS 975, Paris, France
关键词
Cross-validation; Decoding; FMRI; Model selection; Sparse; Bagging; MVPA; FMRI; CLASSIFICATION; STABILITY; PREDICTION; PATTERNS; MACHINE; STATES;
D O I
10.1016/j.neuroimage.2016.10.038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 61 条
[41]   Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data [J].
Mourao-Miranda, J ;
Bokde, ALW ;
Born, C ;
Hampel, H ;
Stetter, M .
NEUROIMAGE, 2005, 28 (04) :980-995
[42]   Encoding and decoding in fMRI [J].
Naselaris, Thomas ;
Kay, Kendrick N. ;
Nishimoto, Shinji ;
Gallant, Jack L. .
NEUROIMAGE, 2011, 56 (02) :400-410
[43]   Beyond mind-reading: multi-voxel pattern analysis of fMRI data [J].
Norman, Kenneth A. ;
Polyn, Sean M. ;
Detre, Greg J. ;
Haxby, James V. .
TRENDS IN COGNITIVE SCIENCES, 2006, 10 (09) :424-430
[44]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[45]  
Penny WD, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P454, DOI 10.1016/B978-012372560-8/50035-8
[46]   Machine learning classifiers and fMRI: A tutorial overview [J].
Pereira, Francisco ;
Mitchell, Tom ;
Botvinick, Matthew .
NEUROIMAGE, 2009, 45 (01) :S199-S209
[47]  
Platt JC, 2000, ADV NEUR IN, P61
[48]   Toward open sharing of task-based fMRI data: the OpenfMRI project [J].
Poldrack, Russell A. ;
Barch, Deanna M. ;
Mitchell, Jason P. ;
Wager, Tor D. ;
Wagner, Anthony D. ;
Devlin, Joseph T. ;
Cumba, Chad ;
Koyejo, Oluwasanmi ;
Milham, Michael P. .
FRONTIERS IN NEUROINFORMATICS, 2013, 7
[49]   Thickness network features for prognostic applications in dementia [J].
Raamana, Pradeep Reddy ;
Weiner, Michael W. ;
Wang, Lei ;
Beg, Mirza Faisal .
NEUROBIOLOGY OF AGING, 2015, 36 :S91-S102
[50]   Model sparsity and brain pattern interpretation of classification models in neuroimaging [J].
Rasmussen, Peter M. ;
Hansen, Lars K. ;
Madsen, Kristoffer H. ;
Churchill, Nathan W. ;
Strother, Stephen C. .
PATTERN RECOGNITION, 2012, 45 (06) :2085-2100