Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines

被引:494
作者
Varoquaux, Gael [1 ,2 ]
Raamana, Pradeep Reddy [3 ,4 ]
Engemann, Denis A. [2 ,5 ,6 ,7 ]
Hoyos-Idrobo, Andres [1 ,2 ]
Schwartz, Yannick [1 ,2 ]
Thirion, Bertrand [1 ,2 ]
机构
[1] INRIA Saclay Ile France, Parietal Project Team, Palaiseau, France
[2] CEA, Neurospin, Bat 145, F-91191 Gif Sur Yvette, France
[3] Baycrest Hlth Sci, Rotman Res Inst, Toronto, ON M6A 2E1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
[5] Univ Paris Sud, INSERM, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[6] Univ Paris Saclay, F-91191 Gif Sur Yvette, France
[7] INSERM, Brain & Spine Inst ICM, Neuropsychol & Neuroimaging Team, UMRS 975, Paris, France
关键词
Cross-validation; Decoding; FMRI; Model selection; Sparse; Bagging; MVPA; FMRI; CLASSIFICATION; STABILITY; PREDICTION; PATTERNS; MACHINE; STATES;
D O I
10.1016/j.neuroimage.2016.10.038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 61 条
[21]   Decoding mental states from brain activity in humans [J].
Haynes, John-Dylan ;
Rees, Geraint .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (07) :523-534
[22]   A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives [J].
Haynes, John-Dylan .
NEURON, 2015, 87 (02) :257-270
[23]   Face repetition effects in implicit and explicit memory tests as measured by fMRI [J].
Henson, RNA ;
Shallice, T ;
Gorno-Tempini, ML ;
Dolan, RJ .
CEREBRAL CORTEX, 2002, 12 (02) :178-186
[24]  
Hoyos-Idrobo A., 2015, IMPROVING SPARSE REC
[25]   Decoding the visual and subjective contents of the human brain [J].
Kamitani, Y ;
Tong, F .
NATURE NEUROSCIENCE, 2005, 8 (05) :679-685
[26]   Total activation: fMRI deconvolution through spatio-temporal regularization [J].
Karahanoglu, Fikret Isik ;
Caballero-Gaudes, Cesar ;
Lazeyras, Francois ;
Van De Ville, Dimitri .
NEUROIMAGE, 2013, 73 :121-134
[27]   Recruitment of an Area Involved in Eye Movements During Mental Arithmetic [J].
Knops, Andre ;
Thirion, Bertrand ;
Hubbard, Edward M. ;
Michel, Vincent ;
Dehaene, Stanislas .
SCIENCE, 2009, 324 (5934) :1583-1585
[28]  
Kohavi R., 1995, IJCAI, DOI DOI 10.1067/MOD.2000.109031
[29]   Information-based functional brain mapping [J].
Kriegeskorte, N ;
Goebel, R ;
Bandettini, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3863-3868
[30]   Classifier ensembles for fMRI data analysis: an experiment [J].
Kuncheva, Ludmila I. ;
Rodriguez, Juan J. .
MAGNETIC RESONANCE IMAGING, 2010, 28 (04) :583-593