Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines

被引:459
作者
Varoquaux, Gael [1 ,2 ]
Raamana, Pradeep Reddy [3 ,4 ]
Engemann, Denis A. [2 ,5 ,6 ,7 ]
Hoyos-Idrobo, Andres [1 ,2 ]
Schwartz, Yannick [1 ,2 ]
Thirion, Bertrand [1 ,2 ]
机构
[1] INRIA Saclay Ile France, Parietal Project Team, Palaiseau, France
[2] CEA, Neurospin, Bat 145, F-91191 Gif Sur Yvette, France
[3] Baycrest Hlth Sci, Rotman Res Inst, Toronto, ON M6A 2E1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
[5] Univ Paris Sud, INSERM, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[6] Univ Paris Saclay, F-91191 Gif Sur Yvette, France
[7] INSERM, Brain & Spine Inst ICM, Neuropsychol & Neuroimaging Team, UMRS 975, Paris, France
关键词
Cross-validation; Decoding; FMRI; Model selection; Sparse; Bagging; MVPA; FMRI; CLASSIFICATION; STABILITY; PREDICTION; PATTERNS; MACHINE; STATES;
D O I
10.1016/j.neuroimage.2016.10.038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 61 条
  • [1] Machine learning for neuroirnaging with scikit-learn
    Abraham, Alexandre
    Pedregosa, Fabian
    Eickenberg, Michael
    Gervais, Philippe
    Mueller, Andreas
    Kossaifi, Jean
    Gramfort, Alexandre
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [2] Decoding the Large-Scale Structure of Brain Function by Classifying Mental States Across Individuals
    不详
    [J]. PSYCHOLOGICAL SCIENCE, 2009, 20 (11) : 1364 - 1372
  • [3] A survey of cross-validation procedures for model selection
    Arlot, Sylvain
    Celisse, Alain
    [J]. STATISTICS SURVEYS, 2010, 4 : 40 - 79
  • [4] Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation
    Ashburner, John
    Friston, Karl J.
    [J]. NEUROIMAGE, 2011, 55 (03) : 954 - 967
  • [5] SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE
    BREIMAN, L
    SPECTOR, P
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) : 291 - 319
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Prediction and interpretation of distributed neural activity with sparse models
    Carroll, Melissa K.
    Cecchi, Guillermo A.
    Rish, Irina
    Garg, Rahul
    Rao, A. Ravishankar
    [J]. NEUROIMAGE, 2009, 44 (01) : 112 - 122
  • [8] Exploring predictive and reproducible Modeling with the single-subject FIAC dataset
    Chen, X
    Pereira, F
    Lee, W
    Strother, S
    MitcheI, T
    [J]. HUMAN BRAIN MAPPING, 2006, 27 (05) : 452 - 461
  • [9] Comparing Within-Subject Classification and Regularization Methods in fMRI for Large and Small Sample sizes
    Churchill, Nathan W.
    Yourganov, Grigori
    Strother, Stephen C.
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (09) : 4499 - 4517
  • [10] A Review of Challenges in the Use of fMRI for Disease Classification/Characterization and A Projection Pursuit Application from A Multi-site fMRI Schizophrenia Study
    Demirci, Oguz
    Clark, Vincent P.
    Magnotta, Vincent A.
    Andreasen, Nancy C.
    Lauriello, John
    Kiehl, Kent A.
    Pearlson, Godfrey D.
    Calhoun, Vince D.
    [J]. BRAIN IMAGING AND BEHAVIOR, 2008, 2 (03) : 207 - 226