Blow-up of solutions of a semilinear heat equation with a visco-elastic term

被引:0
作者
Messaoudi, SA [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
来源
Nonlinear Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER | 2005年 / 64卷
关键词
blow-up; finite time; viscoelastic; relaxation function; vanishing energy;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider an initial boundary value problem related to the equation mu(t) - Delta u + integral(t)(0) g(t - s)Delta u(x, s)ds = vertical bar u vertical bar(p-2)u and prove, under suitable conditions on g and p, a blow-up result for solutions with negative or vanishing initial energy. This result improves an earlier one by the author.
引用
收藏
页码:351 / 356
页数:6
相关论文
共 15 条
[1]  
Alfonsi Liliane, 1992, PROGR NONLINEAR DIFF, V7, P1
[3]   EXISTENCE AND REGULARITY FOR A CLASS OF INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE [J].
DAPRATO, G ;
IANNELLI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 112 (01) :36-55
[4]  
FRIEDMAN A, 1992, MATH IND PROBLEMS
[5]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[6]  
JUNNING Z, 1993, J MATH ANAL APPL, V172, P130
[7]  
Kalantarov V. K., 1978, Journal of Soviet Mathematics, V10, P53, DOI 10.1007/BF01109723
[8]   Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type [J].
Levine, HA ;
Park, SR ;
Serrin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 142 (01) :212-229
[9]  
LEVINE HA, 1973, ARCH RATION MECH AN, V51, P371
[10]   Blow up and global existence in a nonlinear viscoelastic wave equation [J].
Messaoudi, SA .
MATHEMATISCHE NACHRICHTEN, 2003, 260 :58-66