A balloon-borne stratospheric telescope for Venus observations

被引:1
作者
Young, Eliot F. [1 ]
Bullock, Mark A. [1 ]
Kraut, Alan [2 ]
Orr, Graham [2 ]
Swartzlander, Kevin [2 ]
Wimer, Tony [2 ]
Wong, Elton [2 ]
Little, Patrick [2 ]
Nakaya, Yusuke [3 ]
Mellon, Russell [4 ]
Germann, Lawrence [5 ]
机构
[1] SW Res Inst, Boulder, CO USA
[2] Harvey Mudd Coll, Claremont, CA USA
[3] Kogakuin Univ, Shinjuku Ku, Tokyo, Japan
[4] Equinox Intersci Inc, Golden, CO USA
[5] Left Hand Design Corp, Longmont, CO USA
来源
GROUND-BASED AND AIRBORNE TELESCOPES II, PTS 1-3 | 2008年 / 7012卷
关键词
balloon; telescope; space imaging; pointing; stability; Venus; controls; lateral effect cell; fast steering mirror;
D O I
10.1117/12.790032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A terrestrial stratospheric telescope is ideally suited for making infrared observations of Venus' night hemisphere during inferior conjunctions. The near-space environment at 35 km altitude has low daytime sky backgrounds and lack of atmospheric turbulence, both of which are necessary for observing Venus' night side at the diffraction limit when Venus is close to the Sun. In addition, the duration of the observing campaign will be around 3 weeks, a time period that is achievable by current long duration flights. The most important advantage, however, will be the ability of a balloon-borne telescope to clearly image Venus' night side continuously throughout a 12-hr period (more for certain launch site latitudes), a capability that cannot be matched from the ground or from the Venus Express spacecraft currently in orbit around Venus. Future missions, such as the Japanese Venus Climate Orbiter will also not be able to achieve this level of synoptic coverage. This capability will provide a detailed, continuous look at evolving cloud distributions in Venus' middle and lower cloud decks through atmospheric windows at 1.74 and 2.3 mu m, which in turn will provide observational constraints on models of Venus' circulation. The science requirements propagate to several aspects of the telescope: a 1.4-m aperture to provide a diffraction limit of 0.3" at 1.74 mu m (to improve upon non-AO ground-based resolution by a factor of 2); a plate scale of 0.1" per pixel, which in turn requires an f/15 telescope for 13 mu m pixels; pointing and stability at the 0.05" level; stray light baffling; a field of view of 2 arc minutes; ability to acquire images at 1.26, 1.74 and 2.3 mu m; and ability to operate aloft for three weeks at a time. The specific implementations of these requirements are outlined in this paper. Briefly, a 1.4-m Gregorian telescope is proposed, with stray light baffling at the intermediate focus. A three-stage pointing system is described, consisting of a coarse azimuthal rotator, a moderate pointing system based on a star tracker and ALT/AZ gimbals, and a fine pointing system based on analog photodiodes and a fine steering mirror. The science detectors are not discussed here, except to specify the requirement for moderate resolution (R > 1000) spectroscopy.
引用
收藏
页数:14
相关论文
共 20 条
[1]   CLOUD STRUCTURE ON THE DARK SIDE OF VENUS [J].
ALLEN, DA ;
CRAWFORD, JW .
NATURE, 1984, 307 (5948) :222-224
[2]   THE ABUNDANCE OF SULFUR-DIOXIDE BELOW THE CLOUDS OF VENUS [J].
BEZARD, B ;
DEBERGH, C ;
FEGLEY, B ;
MAILLARD, JP ;
CRISP, D ;
OWEN, T ;
POLLACK, JB ;
GRINSPOON, D .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (15) :1587-1590
[3]   The recent evolution of climate on venus [J].
Bullock, MA ;
Grinspoon, DH .
ICARUS, 2001, 150 (01) :19-37
[4]   GALILEO INFRARED IMAGING SPECTROSCOPY MEASUREMENTS AT VENUS [J].
CARLSON, RW ;
BAINES, KH ;
ENCRENAZ, T ;
TAYLOR, FW ;
DROSSART, P ;
KAMP, LW ;
POLLACK, JB ;
LELLOUCH, E ;
COLLARD, AD ;
CALCUTT, SB ;
GRINSPOON, D ;
WEISSMAN, PR ;
SMYTHE, WD ;
OCAMPO, AC ;
DANIELSON, GE ;
FANALE, FP ;
JOHNSON, TV ;
KIEFFER, HH ;
MATSON, DL ;
MCCORD, TB ;
SODERBLOM, LA .
SCIENCE, 1991, 253 (5027) :1541-1548
[5]   WATER IN THE DEEP ATMOSPHERE OF VENUS FROM HIGH-RESOLUTION SPECTRA OF THE NIGHT SIDE [J].
DEBERGH, C ;
BEZARD, B ;
CRISP, D ;
MAILLARD, JP ;
OWEN, T ;
POLLACK, J ;
GRINSPOON, D .
EXPLORATION OF VENUS AND MARS ATMOSPHERES, 1995, 15 (04) :79-88
[6]   Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission [J].
Drossart, P. ;
Piccioni, G. ;
Adriani, A. ;
Angrilli, F. ;
Arnold, G. ;
Baines, K. H. ;
Bellucci, G. ;
Benkhoff, J. ;
Bezard, B. ;
Bibring, J.-P. ;
Blanco, A. ;
Blecka, M. I. ;
Carlson, R. W. ;
Coradini, A. ;
Di Lellis, A. ;
Encrenaz, T. ;
Erard, S. ;
Fonti, S. ;
Formisano, V. ;
Fouchet, T. ;
Garcia, R. ;
Haus, R. ;
Helbert, J. ;
Ignatiev, N. I. ;
Irwin, P. G. J. ;
Langevin, Y. ;
Lebonnois, S. ;
Lopez-Valverde, M. A. ;
Luz, D. ;
Marinangeli, L. ;
Orofino, V. ;
Rodin, A. V. ;
Roos-Serote, M. C. ;
Saggin, B. ;
Sanchez-Lavega, A. ;
Stam, D. M. ;
Taylor, F. W. ;
Titov, D. ;
Visconti, G. ;
Zambelli, M. ;
Hueso, R. ;
Tsang, C. C. C. ;
Wilson, C. F. ;
Afanasenko, T. Z. .
PLANETARY AND SPACE SCIENCE, 2007, 55 (12) :1653-1672
[7]  
Esposito L. W., 1983, Venus, P484
[8]   Ultraviolet Contrasts and the Absorbers Near the Venus Cloud Tops [J].
Esposito, Larry W. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (A13) :8151-8157
[9]   A numerical microphysical model of the condensational Venus cloud [J].
James, EP ;
Toon, OB ;
Schubert, G .
ICARUS, 1997, 129 (01) :147-171
[10]  
KRAUT A, 2008, P SOC PHOTO-OPT INS, V7012, P142