Enhanced Isolation of a Closely Spaced Four-Element MIMO Antenna System Using Metamaterial Mushroom

被引:162
作者
Zhai, Guohua [1 ,2 ]
Chen, Zhi Ning [2 ]
Qing, Xianming [2 ]
机构
[1] E China Normal Univ, Sch Informat & Sci Technol, Shanghai 200241, Peoples R China
[2] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
关键词
Cavity-backed slot antenna (CBS); envelope correlation coefficient (ECC); isolation; metamaterial; multiple-input multiple-output (MIMO) antenna; mushroom; mutual coupling; substrate-integrated waveguide (SIW); MICROSTRIP ANTENNAS; SLOT ANTENNA; DIVERSITY; ARRAYS; ELEMENTS;
D O I
10.1109/TAP.2015.2434403
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A double-layer mushroom structure is proposed to enhance the interelement isolation of a four-element antenna system, wherein four closely positioned substrate-integrated cavity-backed slot (SICBS) antenna elements are configured for multiple-input multiple-output (MIMO) applications. A wall with a double-layer mushroom structure is positioned in between the four antenna elements. An antenna prototype with a ground plane size of 0.96 lambda(0) x 0.96 lambda(0) (lambda(0) is the free space-wavelength at 2.4 GHz) demonstrates an enhanced interelement isolation of 16 dB for parallel-directed antenna element pairs, while the isolation of the orthogonally directed antenna element pairs remains unchanged over the operating bandwidth (vertical bar S-11 vertical bar < -10 dB) of 2.396 -2.45 GHz. With the enhanced isolation larger than 42 dB between each antenna element pair, the envelope correlation coefficient (ECC) is lower than 0.02 across the operating bandwidth. The simulated and measured results validate the good MIMO diversity performance of the proposed antenna system.
引用
收藏
页码:3362 / 3370
页数:9
相关论文
共 29 条
[1]  
Ansys Corporation, 2014, ANS HFSS
[2]   Exact representation of antenna system diversity performance from input parameter description [J].
Blanch, S ;
Romeu, J ;
Corbella, I .
ELECTRONICS LETTERS, 2003, 39 (09) :705-707
[3]   Port decoupling for small arrays by means of an eigenmode feed network [J].
Coetzee, Jacob C. ;
Yu, Yantao .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (06) :1587-1593
[4]  
CST Microwave Studio, 2015, COMP SIM TECHN
[5]   Mutual coupling suppression in closely spaced antennas [J].
Dadashzadeh, G. ;
Dadgarpour, A. ;
Jolani, F. ;
Virdee, B. S. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2011, 5 (01) :113-125
[6]   Mutual Coupling Reduction Between Planar Antennas by Using a Simple Microstrip U-Section [J].
Farsi, Saeed ;
Aliakbarian, Hadi ;
Schreurs, Dominique ;
Nauwelaers, Bart ;
Vandenbosch, Guy A. E. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 :1501-1503
[7]   On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas [J].
Foschini G.J. ;
Gans M.J. .
Wireless Personal Communications, 1998, 6 (3) :311-335
[8]   Compact 2 x 2 Coupled Double Loop GPS Antenna Array Loaded With Broadside Coupled Split Ring Resonators [J].
Gheethan, Ahmad A. ;
Herzig, Paul A. ;
Mumcu, Gokhan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (06) :3000-3008
[9]   LTE-ADVANCED: NEXT-GENERATION WIRELESS BROADBAND TECHNOLOGY [J].
Ghosh, Amitava ;
Ratasuk, Rapeepat ;
Mondal, Bishwarup ;
Mangalvedhe, Nitin ;
Thomas, Tim .
IEEE WIRELESS COMMUNICATIONS, 2010, 17 (03) :10-22
[10]   Dual-Layer EBG-Based Miniaturized Multi-Element Antenna for MIMO Systems [J].
Ghosh, Soham ;
Thanh-Ngon Tran ;
Tho Le-Ngoc .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (08) :3985-3997