Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation

被引:32
作者
Wang Xiao-Li [1 ]
Zhang Wei-Guo [1 ]
Zhai Bao-Guo [1 ]
Zhang Hai-Qiang [1 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, POB 253, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; higher-order dispersive nonlinear Schrodinger equation; modified Darboux transformation; SOLITON;
D O I
10.1088/0253-6102/58/4/15
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the rogue waves of the higher-order dispersive nonlinear Schrodinger (HDNLS) equation are investigated, which describes the propagation of ultrashort optical pulse in optical fibers. The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method. The explicit first and second-order rogue wave solutions are presented under the plane wave seeding solution background. The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions. The influence of little perturbation on the rogue waves is discussed with the help of graphical simulation.
引用
收藏
页码:531 / 538
页数:8
相关论文
共 30 条
[11]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[12]   The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation [J].
Dai, Chao-Qing ;
Wang, Yue-Yue ;
Tian, Qing ;
Zhang, Jie-Fang .
ANNALS OF PHYSICS, 2012, 327 (02) :512-521
[13]   Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction [J].
Daniel, M ;
Kavitha, L ;
Amuda, R .
PHYSICAL REVIEW B, 1999, 59 (21) :13774-13781
[14]   Schrodinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity [J].
Davydova, TA ;
Zaliznyak, YA .
PHYSICA D, 2001, 156 (3-4) :260-282
[15]   On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation [J].
Dubard, P. ;
Gaillard, P. ;
Klein, C. ;
Matveev, V. B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :247-258
[16]   Darboux Transformation and Soliton Solutions for a Variable-Coefficient Modified Kortweg-de Vries Model from Fluid Mechanics, Ocean Dynamics, and Plasma Mechanics [J].
Gai Xiao-Ling ;
Gao Yi-Tian ;
Meng De-Xin ;
Wang Lei ;
Sun Zhi-Yuan ;
Lue Xing ;
Feng Qian ;
Wang Ming-Zhen ;
Yu Xin ;
Zhu Shun-Hui .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) :673-678
[17]  
Gaillard P., 2011, HALSHS00536287 ARXIV
[18]   Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrodinger Equations [J].
Guo Bo-Ling ;
Ling Li-Ming .
CHINESE PHYSICS LETTERS, 2011, 28 (11)
[19]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[20]  
Hasegawa A., 1995, Solitons in Optical Communications