Finding the set of all hinge vertices for strongly chordal graphs in linear time

被引:12
作者
Chang, JM [1 ]
Hsu, CC [1 ]
Wang, YL [1 ]
Ho, TY [1 ]
机构
[1] NATL TAIWAN INST TECHNOL,DEPT INFORMAT MANAGEMENT,TAIPEI 10772,TAIWAN
关键词
D O I
10.1016/S0020-0255(96)00272-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let V(G) be the vertex set of a graph G=(V,E), and let G-u be the subgraph induced by the vertex set V(G)-{u}. A vertex u is an element of V(G) is said to be a hinge vertex of G if and only if there exist two vertices x,y is an element of V(G-u) such that d(G-u)(x,y) > d(G)(x,y), where d(G)(x,y) is the distance (the length of a shortest path) between x and y in G. In this paper, based on the breadth-first search technique, an O(n+e) time algorithm is proposed for finding the set of all hinge vertices of a strongly chordal graph when a strong elimination ordering is given. (C) Elsevier Science Inc. 1997.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 10 条
[1]   CHARACTERIZATIONS OF TOTALLY BALANCED MATRICES [J].
ANSTEE, RP ;
FARBER, M .
JOURNAL OF ALGORITHMS, 1984, 5 (02) :215-230
[2]  
CHANG JM, 1996, P INT COMP S ALG, P105
[3]  
Dirac G. A., 1961, Abh. Math. Semin. Univ. Hambg, V25, P71, DOI DOI 10.1007/BF02992776
[4]  
Faber M., 1983, DISCRETE MATH, V43, P173
[5]   INCIDENCE MATRICES AND INTERVAL GRAPHS [J].
FULKERSON, DR ;
GROSS, OA .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) :835-+
[6]  
Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
[7]   A linear time algorithm for finding all hinge vertices of a permutation graph [J].
Ho, TY ;
Wang, YL ;
Juan, MT .
INFORMATION PROCESSING LETTERS, 1996, 59 (02) :103-107
[8]   3 PARTITION REFINEMENT ALGORITHMS [J].
PAIGE, R ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1987, 16 (06) :973-989
[9]  
Rose D. J., 1976, SIAM Journal on Computing, V5, P266, DOI 10.1137/0205021
[10]  
Rose D. J., 1970, Journal of Mathematical Analysis and Applications, V32, P597, DOI 10.1016/0022-247X(70)90282-9