Generative Recurrent Networks for De Novo Drug Design

被引:298
作者
Gupta, Anvita [1 ,2 ]
Mueller, Alex T. [1 ]
Huisman, Berend J. H. [1 ]
Fuchs, Jens A. [1 ]
Schneider, Petra [1 ,3 ]
Schneider, Gisbert [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland
[2] Stanford Univ, Dept Comp Sci, 450 Sierra Mall, Stanford, CA 94305 USA
[3] inSili Com GmbH, CH-8049 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Chemogenomics; deep learning; drug discovery; machine learning; medicinal chemistry; CHEMICAL SPACE;
D O I
10.1002/minf.201700111
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Generative artificial intelligence models present a fresh approach to chemogenomics and de novo drug design, as they provide researchers with the ability to narrow down their search of the chemical space and focus on regions of interest. We present a method for molecular de novo design that utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells. This computational model captured the syntax of molecular representation in terms of SMILES strings with close to perfect accuracy. The learned pattern probabilities can be used for de novo SMILES generation. This molecular design concept eliminates the need for virtual compound library enumeration. By employing transfer learning, we fine-tuned the RNNs predictions for specific molecular targets. This approach enables virtual compound design without requiring secondary or external activity prediction, which could introduce error or unwanted bias. The results obtained advocate this generative RNN-LSTM system for high-impact use cases, such as low-data drug discovery, fragment based molecular design, and hit-to-lead optimization for diverse drug targets.
引用
收藏
页数:9
相关论文
共 27 条
  • [1] [Anonymous], 2016, Google's neural machine translation system: Bridging the gap between human and machine translation
  • [2] A renaissance of neural networks in drug discovery
    Baskin, Igor I.
    Winkler, David
    Tetko, Igor V.
    [J]. EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (08) : 785 - 795
  • [3] Bjerrum E. J., 2017, ARXIV170504612
  • [4] The Next Era: Deep Learning in Pharmaceutical Research
    Ekins, Sean
    [J]. PHARMACEUTICAL RESEARCH, 2016, 33 (11) : 2594 - 2603
  • [5] Twenty years on: the impact of fragments on drug discovery
    Erlanson, Daniel A.
    Fesik, Stephen W.
    Hubbard, Roderick E.
    Jahnke, Wolfgang
    Jhoti, Harren
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2016, 15 (09) : 605 - 619
  • [6] 6 Deep Learning in Drug Discovery
    Gawehn, Erik
    Hiss, Jan A.
    Schneider, Gisbert
    [J]. MOLECULAR INFORMATICS, 2016, 35 (01) : 3 - 14
  • [7] Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
    Gomez-Bombarelli, Rafael
    Wei, Jennifer N.
    Duvenaud, David
    Hernandez-Lobato, Jose Miguel
    Sanchez-Lengeling, Benjamin
    Sheberla, Dennis
    Aguilera-Iparraguirre, Jorge
    Hirzel, Timothy D.
    Adams, Ryan P.
    Aspuru-Guzik, Alan
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (02) : 268 - 276
  • [8] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
  • [9] Principles of early drug discovery
    Hughes, J. P.
    Rees, S.
    Kalindjian, S. B.
    Philpott, K. L.
    [J]. BRITISH JOURNAL OF PHARMACOLOGY, 2011, 162 (06) : 1239 - 1249
  • [10] Lanchantin J., 2016, Proc. Pacific Symposium on Biocomputing, P254