Heat propagation models for superconducting nanobridges at millikelvin temperatures

被引:9
作者
Blois, A. [1 ]
Rozhko, S. [1 ]
Hao, L. [2 ]
Gallop, J. C. [2 ]
Romans, E. J. [1 ]
机构
[1] UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[2] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
nanoSQUID; heat model; retrapping current; superconducting quantum interference device; superconductivity; thermal hysteresis; millikelvin;
D O I
10.1088/0953-2048/30/1/014003
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T-c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface [J].
Bert, Julie A. ;
Kalisky, Beena ;
Bell, Christopher ;
Kim, Minu ;
Hikita, Yasuyuki ;
Hwang, Harold Y. ;
Moler, Kathryn A. .
NATURE PHYSICS, 2011, 7 (10) :767-771
[2]   Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry [J].
Blois, A. ;
Rozhko, S. ;
Hao, L. ;
Gallop, J. C. ;
Romans, E. J. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (23)
[3]   Optimizing the flux coupling between a nanoSQUID and a magnetic particle using atomic force microscope nanolithography [J].
Faucher, M. ;
Jubert, P. O. ;
Fruchart, O. ;
Wernsdorfer, W. ;
Bouchiat, V. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (06)
[4]   Coupled NanoSQUIDs and Nano-Electromechanical Systems (NEMS) Resonators [J].
Hao, L. ;
Cox, D. C. ;
Gallop, J. C. ;
Chen, J. ;
Rozhko, S. ;
Blois, A. ;
Romans, E. J. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[5]  
Hao L, 2008, APPL PHYS LETT, V92
[6]   Hysteresis in superconducting short weak links and μ-SQUIDs [J].
Hazra, Dibyendu ;
Pascal, Laetitia M. A. ;
Courtois, Herve ;
Gupta, Anjan K. .
PHYSICAL REVIEW B, 2010, 82 (18)
[7]  
Kulik I. O., 1975, SOV PHYS JETP, V41, P1071
[8]   Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations [J].
Lam, SKH ;
Tilbrook, DL .
APPLIED PHYSICS LETTERS, 2003, 82 (07) :1078-1080
[9]   Josephson persistent-current qubit [J].
Mooij, JE ;
Orlando, TP ;
Levitov, L ;
Tian, L ;
van der Wal, CH ;
Lloyd, S .
SCIENCE, 1999, 285 (5430) :1036-1039
[10]  
Nowack KC, 2013, NAT MATER, V12, P787, DOI [10.1038/NMAT3682, 10.1038/nmat3682]