Extremes of the supercritical Gaussian Free Field

被引:0
作者
Chiarini, Alberto [1 ]
Cipriani, Alessandra [2 ]
Hazra, Rajat Subhra [3 ]
机构
[1] Tech Univ Berlin, MA 766,Str 17 Juni 136, D-10623 Berlin, Germany
[2] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[3] Indian Stat Inst, Theoret Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2016年 / 13卷 / 02期
关键词
Extreme value theory; Gaussian free field; Stein-Chen method; CONVERGENCE; LAW;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the rescaled maximum of the discrete Gaussian Free Field (DGFF) in dimension larger or equal to 3 is in the maximal domain of attraction of the Gumbel distribution. The result holds both for the in finite-volume field as well as the field with zero boundary conditions. We show that these results follow from an interesting application of the Stein-Chen method from Arratia et al. (1989).
引用
收藏
页码:711 / 724
页数:14
相关论文
共 18 条
[1]  
Adler R.J., 2007, Random Fields and Geometry
[2]  
[Anonymous], APPL PROBABILITY SER
[3]  
[Anonymous], 2014, ARXIV14104676
[4]   2 MOMENTS SUFFICE FOR POISSON APPROXIMATIONS - THE CHEN-STEIN METHOD [J].
ARRATIA, R ;
GOLDSTEIN, L ;
GORDON, L .
ANNALS OF PROBABILITY, 1989, 17 (01) :9-25
[5]   Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field [J].
Biskup, Marek ;
Louidor, Oren .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (01) :271-304
[6]   Convergence in Law of the Maximum of the Two-Dimensional Discrete Gaussian Free Field [J].
Bramson, Maury ;
Ding, Jian ;
Zeitouni, Ofer .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (01) :62-123
[7]  
Chatterjee S, 2014, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-319-03886-5_1
[8]  
Drewitz A., 2015, ELECTRON J PROBAB, P39
[9]  
FUNAKI T., 2005, Lecture Notes in Math., V1869, P103, DOI [10.1007/114295792, DOI 10.1007/11429579_2]
[10]  
Georgii H.-O., 1988, DEGRUYTER STUDIES MA, V9