The use of CRISPR/Cas associated technologies for cell transplant applications

被引:15
作者
Cowan, Peter J. [1 ,2 ]
机构
[1] St Vincents Hosp, Immunol Res Ctr, POB 2900, Fitzroy, Vic 3065, Australia
[2] Univ Melbourne, Dept Med, Melbourne, Vic, Australia
关键词
cell therapy; CRISPR; Cas9; genome editing; induced pluripotent stem cells; xenotransplantation; PLURIPOTENT STEM-CELLS; DUCHENNE MUSCULAR-DYSTROPHY; PIG-TO-HUMAN; CRISPR-CAS9; NUCLEASES; PRECISE CORRECTION; GENETIC CORRECTION; CYSTIC-FIBROSIS; PATIENT IPSCS; BETA-GLOBIN; GENOME;
D O I
10.1097/MOT.0000000000000347
中图分类号
R3 [基础医学]; R4 [临床医学];
学科分类号
1001 ; 1002 ; 100602 ;
摘要
Purpose of reviewIn this review, I will summarize recent developments in the use of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) genome editing system for cell transplant applications, ranging from transplantation of corrected autologous patient stem cells to treat inherited diseases, to the tailoring of donor pigs for cell xenotransplantation. Rational engineering of the Cas9 nuclease to improve its specificity will also be discussed.Recent findingsOver the past year, CRISPR/Cas9 has been used in preclinical studies to correct mutations in a rapidly increasing spectrum of diseases including hematological, neuromuscular, and respiratory disorders. The growing popularity of CRISPR/Cas9 over earlier genome editing platforms is partly due to its ease of use and flexibility, which is evident from the success of complex manipulations such as specific deletion of up to 725kb in patient-derived stem cells, and simultaneous disruption of up to 62 endogenous retrovirus loci in pig cells. In addition, high-fidelity variants of Cas9 with greatly increased specificity are now available.SummaryCRISPR/Cas9 is a fast-evolving technology that is likely to have a significant impact on autologous, allogeneic, and xenogeneic cell transplantation.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 57 条
[1]   Pluripotent stem cell applications for regenerative medicine [J].
Angelos, Mathew G. ;
Kaufman, Dan S. .
CURRENT OPINION IN ORGAN TRANSPLANTATION, 2015, 20 (06) :663-670
[2]   Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression [J].
Badin, R. Aron ;
Vadori, M. ;
Vanhove, B. ;
Nerriere-Daguin, V. ;
Naveilhan, P. ;
Neveu, I. ;
Jan, C. ;
Leveque, X. ;
Venturi, E. ;
Mermillod, P. ;
Van Camp, N. ;
Dolle, F. ;
Guillermier, M. ;
Denaro, L. ;
Manara, R. ;
Citton, V. ;
Simioni, P. ;
Zampieri, P. ;
D'avella, D. ;
Rubello, D. ;
Fante, F. ;
Boldrin, M. ;
De Benedictis, G. M. ;
Cavicchioli, L. ;
Sgarabotto, D. ;
Plebani, M. ;
Stefani, A. L. ;
Brachet, P. ;
Blancho, G. ;
Soulillou, J. P. ;
Hantraye, P. ;
Cozzi, E. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2016, 16 (07) :2016-2029
[3]   Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells [J].
Bassuk, Alexander G. ;
Zheng, Andrew ;
Li, Yao ;
Tsang, Stephen H. ;
Mahajan, Vinit B. .
SCIENTIFIC REPORTS, 2016, 6
[4]  
Butler J.R., 2016, Transgenic Res
[5]   Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection [J].
Butler, James R. ;
Skill, Nicholas J. ;
Priestman, David L. ;
Platt, Frances M. ;
Li, Ping ;
Estrada, Jose L. ;
Martens, Gregory R. ;
Ladowski, Joseph M. ;
Tector, Matthew ;
Tector, A. Joseph .
XENOTRANSPLANTATION, 2016, 23 (02) :106-116
[6]   Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response [J].
Butler, James R. ;
Wang, Zheng-Yu ;
Martens, Gregory R. ;
Ladowsld, Joseph M. ;
Li, Ping ;
Tector, Matthew ;
Tector, A. Joseph .
TRANSPLANT IMMUNOLOGY, 2016, 35 :47-51
[7]   Silencing Porcine CMAH and GGTA1 Genes Significantly Reduces Xenogeneic Consumption of Human Platelets by Porcine Livers [J].
Butler, James Russell ;
Paris, Leela L. ;
Blankenship, Ross L. ;
Sidner, Richard A. ;
Martens, Gregory R. ;
Ladowski, Joseph M. ;
Li, Ping ;
Estrada, Jose L. ;
Tector, Matthew ;
Tector, A. Joseph .
TRANSPLANTATION, 2016, 100 (03) :571-576
[8]   BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis [J].
Canver, Matthew C. ;
Smith, Elenoe C. ;
Sher, Falak ;
Pinello, Luca ;
Sanjana, Neville E. ;
Shalem, Ophir ;
Chen, Diane D. ;
Schupp, Patrick G. ;
Vinjamur, Divya S. ;
Garcia, Sara P. ;
Luc, Sidinh ;
Kurita, Ryo ;
Nakamura, Yukio ;
Fujiwara, Yuko ;
Maeda, Takahiro ;
Yuan, Guo-Cheng ;
Zhang, Feng ;
Orkin, Stuart H. ;
Bauer, Daniel E. .
NATURE, 2015, 527 (7577) :192-+
[9]   Salient Features of Endonuclease Platforms for Therapeutic Genome Editing [J].
Certo, Michael T. ;
Morgan, Richard A. .
MOLECULAR THERAPY, 2016, 24 (03) :422-429
[10]   Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting [J].
Chang, Chia-Wei ;
Lai, Yi-Shin ;
Westin, Erik ;
Khodadadi-Jamayran, Alireza ;
Pawlik, Kevin M. ;
Lamb, Lawrence S., Jr. ;
Goldman, Frederick D. ;
Townes, Tim M. .
CELL REPORTS, 2015, 12 (10) :1668-1677