Homogeneous boron doping in a TiO2 shell supported on a TiB2 core for enhanced photocatalytic water oxidation

被引:21
作者
Yang, Yongqiang [1 ]
Kang, Yuyang [1 ,2 ]
Liu, Gang [1 ,2 ]
Cheng, Hui-Ming [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci, Shenyang 110016, Liaoning, Peoples R China
[3] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Guangdong, Peoples R China
[4] King Abdulaziz Univ, Ctr Excellence Environm Studies, Jeddah 21589, Saudi Arabia
基金
美国国家科学基金会;
关键词
Photocatalysis; O-2; evolution; TiO2; Homogenous doping; VISIBLE-LIGHT ABSORPTION; RUTILE TIO2; HYDROGEN; SURFACE; MICROSPHERES; PREFERENCES; PHOSPHATE; CATALYST; ARRAYS; H-2;
D O I
10.1016/S1872-2067(18)63043-8
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Photocatalytic water oxidation for O-2 evolution is known as a bottle neck in water splitting. Various strategies have been conducted to keep the energetics of photogenerated holes or to create more holes in the bulk to reach the surface for efficient photocatalytic water oxidation. Our previous study demonstrated the effectiveness of interstitial boron doping in improving photocatalytic water oxidation by lowering the valence band maximum of TiO2 with a concentration gradient of boron. In this study, homogeneous doping of interstitial boron was realized in a TiO2 shell with mixed anatase/rutile phases that was produced by the gaseous hydrolysis of the surface layer of TiB2 crystals in a moist argon atmosphere. Consequently, the homogeneous doping and lowered valence band maximum improved the energetics of holes for efficient photocatalytic water oxidation. (C) 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 25 条
[1]   Boron-Doped Anatase TiO2: Pure and Hybrid DFT Calculations [J].
Finazzi, Emanuele ;
Di Valentin, Cristiana ;
Pacchioni, Gianfranco .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (01) :220-228
[2]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408
[3]   In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ [J].
Kanan, Matthew W. ;
Nocera, Daniel G. .
SCIENCE, 2008, 321 (5892) :1072-1075
[4]   Heterogeneous photocatalyst materials for water splitting [J].
Kudo, Akihiko ;
Miseki, Yugo .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :253-278
[5]   Significant Enhancement in Visible Light Absorption of TiO2 Nanotube Arrays by Surface Band Gap Tuning [J].
Kurian, Sajith ;
Seo, Hyungtak ;
Jeon, Hyeongtag .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (33) :16811-16819
[6]   Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl [J].
Li, Hao ;
Shang, Jian ;
Zhu, Huijun ;
Yang, Zhiping ;
Ai, Zhihui ;
Zhang, Lizhi .
ACS CATALYSIS, 2016, 6 (12) :8276-8285
[7]   Synthesis of TiO2/g-C3N4 nanocomposites with phosphate-oxygen functional bridges for improved photocatalytic activity [J].
Liu, Chong ;
Raziq, Fazal ;
Li, Zhijun ;
Qu, Yang ;
Zada, Amir ;
Jing, Liqiang .
CHINESE JOURNAL OF CATALYSIS, 2017, 38 (06) :1072-1078
[8]   Heteroatom-Modulated Switching of Photocatalytic Hydrogen and Oxygen Evolution Preferences of Anatase TiO2 Microspheres [J].
Liu, Gang ;
Pan, Jian ;
Yin, Lichang ;
Irvine, John T. S. ;
Li, Feng ;
Tan, Jun ;
Wormald, Philip ;
Cheng, Hui-Ming .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (15) :3233-3238
[9]   Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4-xNx photocatalysts through valence band fine-tuning [J].
Liu, Gang ;
Niu, Ping ;
Wang, Lianzhou ;
Lu, Gao Qing ;
Cheng, Hui-Ming .
CATALYSIS SCIENCE & TECHNOLOGY, 2011, 1 (02) :222-225
[10]   Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4 [J].
Liu, Gang ;
Niu, Ping ;
Sun, Chenghua ;
Smith, Sean C. ;
Chen, Zhigang ;
Lu, Gao Qing ;
Cheng, Hui-Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) :11642-11648