Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells

被引:44
作者
Grabecki, G. [1 ,2 ]
Wrobel, J. [1 ,3 ]
Czapkiewicz, M. [1 ]
Cywinski, L. [1 ]
Gieraltowska, S. [1 ]
Guziewicz, E. [1 ]
Zholudev, M. [4 ,5 ]
Gavrilenko, V. [5 ]
Mikhailov, N. N.
Dvoretski, S. A.
Teppe, F. [4 ]
Knap, W. [4 ,6 ]
Dietl, T. [1 ,7 ,8 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[2] Cardinal Wyszynski Univ, Coll Sci, Dept Math & Nat Sci, PL-01938 Warsaw, Poland
[3] Rzeszow Univ, Fac Math & Nat Sci, PL-35959 Rzeszow, Poland
[4] Univ Montpellier 2, CNRS, UMR 5221, GIS TERALAB,L2C, F-34095 Montpellier, France
[5] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
[6] Polish Acad Sci, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[7] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-00681 Warsaw, Poland
[8] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
欧洲研究理事会;
关键词
INSULATOR; TRANSPORT; GRAPHENE; STATE;
D O I
10.1103/PhysRevB.88.165309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg0.3Cd0.7Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by the edge channels, as expected for a two-dimensional topological insulator. However, high and nonquantized values of channel resistances show that the topological protection length (i.e., the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is similar to 100 mu m. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasiperiodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.
引用
收藏
页数:7
相关论文
共 40 条
[31]   Nonlocal Transport in the Quantum Spin Hall State [J].
Roth, Andreas ;
Bruene, Christoph ;
Buhmann, Hartmut ;
Molenkamp, Laurens W. ;
Maciejko, Joseph ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
SCIENCE, 2009, 325 (5938) :294-297
[32]  
SAWICKI M, 1983, LECT NOTES PHYS, V177, P382
[33]   Inelastic Electron Backscattering in a Generic Helical Edge Channel [J].
Schmidt, Thomas L. ;
Rachel, Stephan ;
von Oppen, Felix ;
Glazman, Leonid I. .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[34]   Edge channel transport in the InAs/GaSb topological insulating phase [J].
Suzuki, Kyoichi ;
Harada, Yuichi ;
Onomitsu, Koji ;
Muraki, Koji .
PHYSICAL REVIEW B, 2013, 87 (23)
[35]   Conductance of a Helical Edge Liquid Coupled to a Magnetic Impurity [J].
Tanaka, Yoichi ;
Furusaki, A. ;
Matveev, K. A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)
[36]   Ballistic Quantum Spin Hall State and Enhanced Edge Backscattering in Strong Magnetic Fields [J].
Tkachov, G. ;
Hankiewicz, E. M. .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[37]   Helical Edge Resistance Introduced by Charge Puddles [J].
Vaeyrynen, Jukka I. ;
Goldstein, Moshe ;
Glazman, Leonid I. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[38]   Helical liquid and the edge of quantum spin Hall systems [J].
Wu, CJ ;
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[39]   Stability of the quantum spin Hall effect:: Effects of interactions, disorder, and Z2 topology -: art. no. 045322 [J].
Xu, CK ;
Moore, JE .
PHYSICAL REVIEW B, 2006, 73 (04)
[40]   Magnetospectroscopy of two-dimensional HgTe-based topological insulators around the critical thickness [J].
Zholudev, M. ;
Teppe, F. ;
Orlita, M. ;
Consejo, C. ;
Torres, J. ;
Dyakonova, N. ;
Czapkiewicz, M. ;
Wrobel, J. ;
Grabecki, G. ;
Mikhailov, N. ;
Dvoretskii, S. ;
Ikonnikov, A. ;
Spirin, K. ;
Aleshkin, V. ;
Gavrilenko, V. ;
Knap, W. .
PHYSICAL REVIEW B, 2012, 86 (20)